These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35995045)

  • 21. Size-Dependent Localized Phonon Population in Semiconducting Si Nanowires.
    Patsha A; Dhara S
    Nano Lett; 2018 Nov; 18(11):7181-7187. PubMed ID: 30352163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat transfer in rough nanofilms and nanowires using full band ab initio Monte Carlo simulation.
    Davier B; Larroque J; Dollfus P; Chaput L; Volz S; Lacroix D; Saint-Martin J
    J Phys Condens Matter; 2018 Dec; 30(49):495902. PubMed ID: 30431020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman characterization of single-crystalline Ga
    CorrĂȘa GB; Kumar S; Paschoal W; Devi C; Jacobsson D; Johannes A; Ronning C; Pettersson H; Paraguassu W
    Nanotechnology; 2019 Aug; 30(33):335202. PubMed ID: 31018190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aluminium nanopillars reduce thermal conductivity of silicon nanobeams.
    Anufriev R; Yanagisawa R; Nomura M
    Nanoscale; 2017 Oct; 9(39):15083-15088. PubMed ID: 28967655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires.
    Shin HS; Jeon SG; Yu J; Kim YS; Park HM; Song JY
    Nanoscale; 2014 Jun; 6(11):6158-65. PubMed ID: 24788482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal transport in monolayer zinc-sulfide: effects of length, temperature and vacancy defects.
    Islam ASMJ; Islam MS; Islam MR; Stampfl C; Park J
    Nanotechnology; 2021 Aug; 32(43):. PubMed ID: 34243178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modal analysis of the thermal conductivity of nanowires: examining unique thermal transport features.
    Samaraweera N; Larkin JM; Chan KL; Mithraratne K
    J Phys Condens Matter; 2018 Jun; 30(22):225301. PubMed ID: 29658884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Randomness-Induced Phonon Localization in Graphene Heat Conduction.
    Hu S; Zhang Z; Jiang P; Chen J; Volz S; Nomura M; Li B
    J Phys Chem Lett; 2018 Jul; 9(14):3959-3968. PubMed ID: 29968477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires.
    Zhou Y; Chen Y; Hu M
    Sci Rep; 2016 Apr; 6():24903. PubMed ID: 27113556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The first-principles and BTE investigation of phonon transport in 1T-TiSe
    Wang ZL; Chen G; Zhang X; Tang D
    Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures.
    Sakhavand N; Shahsavari R
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18312-9. PubMed ID: 26158661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures.
    Hu S; Zhang Z; Jiang P; Ren W; Yu C; Shiomi J; Chen J
    Nanoscale; 2019 Jun; 11(24):11839-11846. PubMed ID: 31184669
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning interfacial thermal conductance of GaN/AlN heterostructure nanowires by constructing core/shell structure.
    Ren X; Wu CW; Li SY; Xie ZX; Zhou WX
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36623322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamic simulation of thermal transport in monolayer C
    Yang B; Han D; Wang X; Hu S; Xin Q; Cao BY; Xin G
    Nanotechnology; 2020 May; 31(18):185404. PubMed ID: 31952060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics study on the contribution of anisotropic phonon transmission to thermal conductivity of silicon.
    Cheng C; Wang S
    J Phys Condens Matter; 2022 Sep; 34(43):. PubMed ID: 35995038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductivity of fivefold twinned silicon-germanium heteronanowires.
    Zhou Z; Zeng J; Song Z; Lin Y; Shi Q; Hao Y; Fu Y; Zhang Z; Wu J
    Phys Chem Chem Phys; 2023 Sep; 25(37):25368-25376. PubMed ID: 37705382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections.
    Wang H; Cheng Y; Fan Z; Guo Y; Zhang Z; Bescond M; Nomura M; Ala-Nissila T; Volz S; Xiong S
    Nanoscale; 2021 Jun; 13(22):10010-10015. PubMed ID: 34037041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the effect of chirality on thermal transport in a pillared-graphene structure.
    Panneerselvam V; Anandakrishnan A; Sathian SP
    Phys Chem Chem Phys; 2023 Feb; 25(8):6184-6193. PubMed ID: 36752543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.