These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35995182)

  • 1. Carbonyl sulfur removal from blast furnace gas: Recent progress, application status and future development.
    Wang Y; Ding L; Long H; Xiao J; Qian L; Wang H; Xu CC
    Chemosphere; 2022 Nov; 307(Pt 4):136090. PubMed ID: 35995182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting effect of Fe/La loading on γ-Al
    Gao P; Li Y; Lin Y; Chang L; Zhu T
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84166-84179. PubMed ID: 35776304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research progress on adsorption and separation of carbonyl sulfide in blast furnace gas.
    Wang Y; Wu X; Wei D; Chen Y; Yang J; Wu L
    RSC Adv; 2023 Apr; 13(18):12618-12633. PubMed ID: 37101950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of Carbonyl Sulfide in Blast Furnace Gas Using Alkali Metal-Modified γ-Al
    Cao Q; Lin Y; Li Y; Tian J; Liu H; Zhu T; Wang J
    ACS Omega; 2023 Oct; 8(39):35608-35618. PubMed ID: 37810668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic hydrolysis of carbonyl sulfide in blast furnace gas over Sm-Ce-O
    Yu J; Lu Y; Wang S; Xu M; Jin Q; Zhu C; Chen J; Xu H
    RSC Adv; 2024 Jan; 14(5):3135-3145. PubMed ID: 38249668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu/Biochar Bifunctional Catalytic Removal of COS and H
    Li X; Wang X; Yuan L; Wang L; Ma Y; Cao R; Xie Y; Xiong Y; Ning P
    Environ Sci Technol; 2024 Mar; 58(10):4802-4811. PubMed ID: 38427711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of SO
    Xie B; Geng N; Yu Q; He D; Wang F; Liu T; Gao J; Ning P; Song X; Jia L
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15642-15653. PubMed ID: 34633620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission inventory of carbonyl sulfide (COS) from primary anthropogenic sources in China.
    Yan Y; Li R; Peng L; Yang C; Liu C; Cao J; Yang F; Li Y; Wu J
    Environ Pollut; 2019 Apr; 247():745-751. PubMed ID: 30721865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Na/K Doping to the Activity and Mechanism of Low-Temperature COS Hydrolysis over TiO
    Liu Y; Wu P; Shen K; Zhang Y; Li G; Li B
    ACS Omega; 2022 Apr; 7(15):13299-13312. PubMed ID: 35474818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.
    Chen L; Bhattacharya S
    Environ Sci Technol; 2013 Feb; 47(3):1729-34. PubMed ID: 23301852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics and anthropogenic sources of carbonyl sulfide in Beijing.
    Cheng Y; Zhang C; Zhang Y; Zhang H; Sun X; Mu Y
    J Environ Sci (China); 2015 Feb; 28():163-70. PubMed ID: 25662251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrolysis of carbonyl sulfide at low temperature: a review.
    Zhao S; Yi H; Tang X; Jiang S; Gao F; Zhang B; Zuo Y; Wang Z
    ScientificWorldJournal; 2013; 2013():739501. PubMed ID: 23956697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on sulfur oxides and nitric oxides released from coal-fired flue gas and vehicle exhaust: a bibliometric analysis.
    Wang H; Fu Z; Lu W; Zhao Y; Hao R
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17821-17833. PubMed ID: 31037527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economics of an integrated approach to control SO2, NOX, HCl, and particulate emissions from power plants.
    Shemwell BE; Ergut A; Levendis YA
    J Air Waste Manag Assoc; 2002 May; 52(5):521-34. PubMed ID: 12022692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.
    Sun T; Shen Y; Jia J
    Environ Sci Technol; 2014 Feb; 48(4):2263-72. PubMed ID: 24456468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the presence of water on sulfur removal capacity during H
    Dogan C; Martini S; Retschitzegger S; Çetin B
    Environ Technol; 2023 Nov; 44(25):3803-3812. PubMed ID: 35499395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury mass flow in iron and steel production process and its implications for mercury emission control.
    Wang F; Wang S; Zhang L; Yang H; Gao W; Wu Q; Hao J
    J Environ Sci (China); 2016 May; 43():293-301. PubMed ID: 27155436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.
    Asaoka S; Okamura H; Kim K; Hatanaka Y; Nakamoto K; Hino K; Oikawa T; Hayakawa S; Okuda T
    Chemosphere; 2017 Feb; 168():384-389. PubMed ID: 27810538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abatement of NO/SO
    Yuan P; Ma H; Shen B; Ji Z
    Sci Total Environ; 2022 Feb; 806(Pt 4):150958. PubMed ID: 34656565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation and emission of carbonyl sulfide, an atmospheric trace gas, by fungi isolated from forest soil.
    Masaki Y; Ozawa R; Kageyama K; Katayama Y
    FEMS Microbiol Lett; 2016 Sep; 363(18):. PubMed ID: 27559044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.