BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35995347)

  • 21. Uric Acid as a Risk Factor for Chronic Kidney Disease and Cardiovascular Disease - Japanese Guideline on the Management of Asymptomatic Hyperuricemia.
    Hisatome I; Li P; Miake J; Taufiq F; Mahati E; Maharani N; Utami SB; Kuwabara M; Bahrudin U; Ninomiya H
    Circ J; 2021 Jan; 85(2):130-138. PubMed ID: 33342914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xanthine oxidoreductase inhibition ameliorates high glucose-induced glomerular endothelial injury by activating AMPK through the purine salvage pathway.
    Yang KJ; Park H; Chang YK; Park CW; Kim SY; Hong YA
    Sci Rep; 2024 May; 14(1):11167. PubMed ID: 38750091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase.
    Kelley EE
    Arch Toxicol; 2015 Aug; 89(8):1193-207. PubMed ID: 25995007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasma Xanthine Oxidoreductase Activity Associated with Glycemic Control in Patients with Pre-Dialysis Chronic Kidney Disease.
    Nakatani S; Ishimura E; Murase T; Nakamura T; Nakatani A; Toi N; Nishide K; Uedono H; Tsuda A; Kurajoh M; Yamada S; Mori K; Inaba M; Emoto M
    Kidney Blood Press Res; 2021; 46(4):475-483. PubMed ID: 34082427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An evidence-based review on urate-lowering treatments: implications for optimal treatment of chronic hyperuricemia.
    Bove M; Cicero AF; Veronesi M; Borghi C
    Vasc Health Risk Manag; 2017; 13():23-28. PubMed ID: 28223818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling.
    Agarwal A; Banerjee A; Banerjee UC
    Crit Rev Biotechnol; 2011 Sep; 31(3):264-80. PubMed ID: 21774633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction.
    Pinheiro LC; Oliveira-Paula GH; Portella RL; Guimarães DA; de Angelis CD; Tanus-Santos JE
    Redox Biol; 2016 Oct; 9():134-143. PubMed ID: 27521759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xanthine Oxidoreductase Inhibitors.
    Vickneson K; George J
    Handb Exp Pharmacol; 2021; 264():205-228. PubMed ID: 32789757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications.
    Berry CE; Hare JM
    J Physiol; 2004 Mar; 555(Pt 3):589-606. PubMed ID: 14694147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative effect of allopurinol and febuxostat on long-term renal outcomes in patients with hyperuricemia and chronic kidney disease: a systematic review.
    Hu AM; Brown JN
    Clin Rheumatol; 2020 Nov; 39(11):3287-3294. PubMed ID: 32418037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiovascular significance of adipose-derived adiponectin and liver-derived xanthine oxidoreductase in metabolic syndrome.
    Fujishima Y; Kita S; Nishizawa H; Maeda N; Shimomura I
    Endocr J; 2023 Jul; 70(7):663-675. PubMed ID: 37316258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allopurinol, an inhibitor of uric acid synthesis--can it be used for the treatment of metabolic syndrome and related disorders?
    Suzuki I; Yamauchi T; Onuma M; Nozaki S
    Drugs Today (Barc); 2009 May; 45(5):363-78. PubMed ID: 19584965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications.
    Puddu P; Puddu GM; Cravero E; Vizioli L; Muscari A
    J Cardiol; 2012 May; 59(3):235-42. PubMed ID: 22398104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced XOR activity in eNOS-deficient mice: Effects on the nitrate-nitrite-NO pathway and ROS homeostasis.
    Peleli M; Zollbrecht C; Montenegro MF; Hezel M; Zhong J; Persson EG; Holmdahl R; Weitzberg E; Lundberg JO; Carlström M
    Free Radic Biol Med; 2016 Oct; 99():472-484. PubMed ID: 27609225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of topiroxostat on vascular function in patients with hyperuricemia.
    Higa S; Shima D; Tomitani N; Fujimoto Y; Kario K
    J Clin Hypertens (Greenwich); 2019 Nov; 21(11):1713-1720. PubMed ID: 31556223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The uric acid cardio-nephropathy].
    Viazzi F; Bonino B; Cappadona F; Pontremoli R
    G Ital Nefrol; 2017 Mar; 34(Suppl 69):41-48. PubMed ID: 28682028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout.
    Nishino T; Okamoto K
    J Biol Inorg Chem; 2015 Mar; 20(2):195-207. PubMed ID: 25501928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The urate-lowering efficacy and safety of febuxostat versus allopurinol in Chinese patients with asymptomatic hyperuricemia and with chronic kidney disease stages 3-5.
    Liu X; Wang H; Ma R; Shao L; Zhang W; Jiang W; Luo C; Zhai T; Xu Y
    Clin Exp Nephrol; 2019 Mar; 23(3):362-370. PubMed ID: 30291473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects.
    Battelli MG; Polito L; Bortolotti M; Bolognesi A
    Oxid Med Cell Longev; 2016; 2016():3527579. PubMed ID: 26823950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of topiroxostat in hyperuricemic patients with chronic kidney disease.
    Horino T; Hatakeyama Y; Ichii O; Matsumoto T; Shimamura Y; Inoue K; Terada Y; Okuhara Y
    Clin Exp Nephrol; 2018 Apr; 22(2):337-345. PubMed ID: 28752287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.