These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 35995797)
61. Bactericidal Effect and Cytotoxicity of Graphene Oxide/Silver Nanocomposites. Durairaj S; Sridhar D; Ströhle G; Li H; Chen A ACS Appl Mater Interfaces; 2024 Apr; 16(15):18300-18310. PubMed ID: 38574271 [TBL] [Abstract][Full Text] [Related]
62. Synergistic antibacterial activity of surfactant free Ag-GO nanocomposites. Ahmad MA; Aslam S; Mustafa F; Arshad U Sci Rep; 2021 Jan; 11(1):196. PubMed ID: 33420190 [TBL] [Abstract][Full Text] [Related]
63. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties. Das M; Sethy C; Kundu CN; Tripathy J Int J Biol Macromol; 2023 Jun; 239():124185. PubMed ID: 36977443 [TBL] [Abstract][Full Text] [Related]
64. Sonochemical synthesis of bioinspired graphene oxide-zinc oxide hydrogel for antibacterial painting on biodegradable polylactide film. Le HN; Nguyen TBY; Nguyen DTT; Dao TBT; Nguyen TD; Ha Thuc CN Nanotechnology; 2024 May; 35(30):. PubMed ID: 38640906 [TBL] [Abstract][Full Text] [Related]
65. Elucidating the structural, anticancer, and antibacterial traits of Punica granatum peel extracts-mediated Ag and Ag/GO nanocomposites. J EJ; R R; A JM; S JD Microsc Res Tech; 2022 Jan; 85(1):44-55. PubMed ID: 34319640 [TBL] [Abstract][Full Text] [Related]
66. Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO. Raba-Páez AM; D Malafatti JO; Parra-Vargas CA; Paris EC; Rincón-Joya M PLoS One; 2020; 15(9):e0239868. PubMed ID: 32986775 [TBL] [Abstract][Full Text] [Related]
67. Exploring the antibacterial potential of magnetite/Quince seed mucilage/Ag nanocomposite: Synthesis, characterization, and activity assessment. Gharaati AR; Allafchian A; Karimzadeh F Int J Biol Macromol; 2023 Sep; 249():126120. PubMed ID: 37541468 [TBL] [Abstract][Full Text] [Related]
68. In-Vitro Catalytic and Antibacterial Potential of Green Synthesized CuO Nanoparticles against Prevalent Multiple Drug Resistant Bovine Mastitogen Ul-Hamid A; Dafalla H; Hakeem AS; Haider A; Ikram M Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216450 [TBL] [Abstract][Full Text] [Related]
69. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Hassan SE; Fouda A; Radwan AA; Salem SS; Barghoth MG; Awad MA; Abdo AM; El-Gamal MS J Biol Inorg Chem; 2019 May; 24(3):377-393. PubMed ID: 30915551 [TBL] [Abstract][Full Text] [Related]
70. Photoluminescence, photocatalytic and antibacterial activities of CeO2·CuO·ZnO nanocomposite fabricated by co-precipitation method. Subhan MA; Uddin N; Sarker P; Azad AK; Begum K Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():839-50. PubMed ID: 26002435 [TBL] [Abstract][Full Text] [Related]
71. Preparation and Antibacterial Activity of Nano Copper Oxide- Loaded Zeolite 10X. Ma Y; Hou J Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955555 [TBL] [Abstract][Full Text] [Related]
72. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Priya M; Venkatesan R; Deepa S; Sana SS; Arumugam S; Karami AM; Vetcher AA; Kim SC Sci Rep; 2023 Nov; 13(1):18838. PubMed ID: 37914791 [TBL] [Abstract][Full Text] [Related]
73. Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Najafabadi SAA; Mohammadi A; Kharazi AZ Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():110899. PubMed ID: 32600676 [TBL] [Abstract][Full Text] [Related]
75. Morphological and optical investigation of 2D material-based ternary nanocomposite: Bi Urooj A; Rani M; Shah AA; Aslam S; Siddiqui R; Siddiqa A; Neffati R; Chandio AD RSC Adv; 2022 Nov; 12(51):32986-32993. PubMed ID: 36425176 [TBL] [Abstract][Full Text] [Related]
76. Ultrahigh-efficiency antibacterial and adsorption performance induced by copper-substituted polyoxomolybdate-decorated graphene oxide nanocomposites. Xing C; Chang J; Ma M; Ma P; Sun L; Li M J Colloid Interface Sci; 2022 Apr; 612():664-678. PubMed ID: 35026570 [TBL] [Abstract][Full Text] [Related]
77. Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Prokhorov E; España-Sánchez BL; Luna-Bárcenas G; Padilla-Vaca F; Cruz-Soto ME; Vázquez-Lepe MO; Kovalenko Y; Elizalde-Peña EA Colloids Surf B Biointerfaces; 2019 Aug; 180():186-192. PubMed ID: 31054458 [TBL] [Abstract][Full Text] [Related]
78. Biocidal (bacterial and cancer cells) activities of chitosan/CuO nanomaterial, synthesized via a green process. Karthikeyan C; Varaprasad K; Venugopal SK; Shakila S; Venkatraman BR; Sadiku R Carbohydr Polym; 2021 May; 259():117762. PubMed ID: 33674015 [TBL] [Abstract][Full Text] [Related]
79. Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties. Kubiak A; Siwińska-Ciesielczyk K; Goscianska J; Dobrowolska A; Gabała E; Czaczyk K; Jesionowski T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109839. PubMed ID: 31500036 [TBL] [Abstract][Full Text] [Related]