These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 35995896)
21. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
22. MRI radiomics for the prediction of recurrence in patients with clinically non-functioning pituitary macroadenomas. Machado LF; Elias PCL; Moreira AC; Dos Santos AC; Murta Junior LO Comput Biol Med; 2020 Sep; 124():103966. PubMed ID: 32860977 [TBL] [Abstract][Full Text] [Related]
23. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI. Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606 [TBL] [Abstract][Full Text] [Related]
24. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease. Zhang Y; Liu S Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141 [TBL] [Abstract][Full Text] [Related]
25. Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Zhang L; Zhe X; Tang M; Zhang J; Ren J; Zhang X; Li L Contrast Media Mol Imaging; 2021; 2021():7830909. PubMed ID: 35024015 [TBL] [Abstract][Full Text] [Related]
26. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related]
28. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
29. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862 [TBL] [Abstract][Full Text] [Related]
30. Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning. Sun H; Qu H; Chen L; Wang W; Liao Y; Zou L; Zhou Z; Wang X; Zhou S Eur Radiol; 2019 Nov; 29(11):6152-6162. PubMed ID: 31444599 [TBL] [Abstract][Full Text] [Related]
31. Machine learning-based texture analysis for differentiation of radiologically indeterminate small adrenal tumors on adrenal protocol CT scans. Moawad AW; Ahmed A; Fuentes DT; Hazle JD; Habra MA; Elsayes KM Abdom Radiol (NY); 2021 Oct; 46(10):4853-4863. PubMed ID: 34085089 [TBL] [Abstract][Full Text] [Related]
32. Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach. Kandalgaonkar P; Sahu A; Saju AC; Joshi A; Mahajan A; Thakur M; Sahay A; Epari S; Sinha S; Dasgupta A; Chatterjee A; Shetty P; Moiyadi A; Agarwal J; Gupta T; Goda JS Front Oncol; 2022; 12():879376. PubMed ID: 36276136 [TBL] [Abstract][Full Text] [Related]
33. MRI radiomics based machine learning model of the periaqueductal gray matter in migraine patients. Mese I; Karaci R; Altintas Taslicay C; Taslicay C; Akansel G; Domac SF Ideggyogy Sz; 2024 Jan; 77(1-2):39-49. PubMed ID: 38321855 [TBL] [Abstract][Full Text] [Related]
35. Multiparametric MRI-based machine learning models for preoperatively predicting rectal adenoma with canceration. Li P; Song G; Wu R; Li H; Zhang R; Zuo P; Li A MAGMA; 2021 Oct; 34(5):707-716. PubMed ID: 33646452 [TBL] [Abstract][Full Text] [Related]
36. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122 [TBL] [Abstract][Full Text] [Related]
37. Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients. Shiri I; Sorouri M; Geramifar P; Nazari M; Abdollahi M; Salimi Y; Khosravi B; Askari D; Aghaghazvini L; Hajianfar G; Kasaeian A; Abdollahi H; Arabi H; Rahmim A; Radmard AR; Zaidi H Comput Biol Med; 2021 May; 132():104304. PubMed ID: 33691201 [TBL] [Abstract][Full Text] [Related]
38. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. Zhang X; Xu X; Tian Q; Li B; Wu Y; Yang Z; Liang Z; Liu Y; Cui G; Lu H J Magn Reson Imaging; 2017 Nov; 46(5):1281-1288. PubMed ID: 28199039 [TBL] [Abstract][Full Text] [Related]
39. Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients. Nazari M; Shiri I; Zaidi H Comput Biol Med; 2021 Feb; 129():104135. PubMed ID: 33254045 [TBL] [Abstract][Full Text] [Related]
40. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]