These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. Gomez Rossi J; Rojas-Perilla N; Krois J; Schwendicke F JAMA Netw Open; 2022 Mar; 5(3):e220269. PubMed ID: 35289862 [TBL] [Abstract][Full Text] [Related]
10. Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study. Zhu J; Chen Z; Zhao J; Yu Y; Li X; Shi K; Zhang F; Yu F; Shi K; Sun Z; Lin N; Zheng Y BMC Oral Health; 2023 Jun; 23(1):358. PubMed ID: 37270488 [TBL] [Abstract][Full Text] [Related]
11. Detecting and treating occlusal caries lesions: a cost-effectiveness analysis. Schwendicke F; Stolpe M; Meyer-Lueckel H; Paris S J Dent Res; 2015 Feb; 94(2):272-80. PubMed ID: 25503613 [TBL] [Abstract][Full Text] [Related]
12. Cost-effectiveness of caries excavations in different risk groups - a micro-simulation study. Schwendicke F; Paris S; Stolpe M BMC Oral Health; 2014 Dec; 14():153. PubMed ID: 25511906 [TBL] [Abstract][Full Text] [Related]
13. Amalgam Alternatives: Cost-Effectiveness and Value of Information Analysis. Schwendicke F; Göstemeyer G; Stolpe M; Krois J J Dent Res; 2018 Nov; 97(12):1317-1323. PubMed ID: 29928832 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Bayrakdar IS; Orhan K; Akarsu S; Çelik Ö; Atasoy S; Pekince A; Yasa Y; Bilgir E; Sağlam H; Aslan AF; Odabaş A Oral Radiol; 2022 Oct; 38(4):468-479. PubMed ID: 34807344 [TBL] [Abstract][Full Text] [Related]
15. Detection and treatment of proximal caries lesions: Milieu-specific cost-effectiveness analysis. Schwendicke F; Paris S; Stolpe M J Dent; 2015 Jun; 43(6):647-55. PubMed ID: 25862278 [TBL] [Abstract][Full Text] [Related]
17. Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo. Park EY; Jeong S; Kang S; Cho J; Cho JY; Kim EK BMC Oral Health; 2023 Dec; 23(1):981. PubMed ID: 38066624 [TBL] [Abstract][Full Text] [Related]
18. In-Office Application of Fluoride Gel or Varnish: Cost-Effectiveness and Expected Value of Perfect Information Analysis. Schwendicke F; Stolpe M Caries Res; 2017; 51(3):231-239. PubMed ID: 28391272 [TBL] [Abstract][Full Text] [Related]
19. Prediction of pulp exposure before caries excavation using artificial intelligence: Deep learning-based image data versus standard dental radiographs. Ramezanzade S; Dascalu TL; Ibragimov B; Bakhshandeh A; Bjørndal L J Dent; 2023 Nov; 138():104732. PubMed ID: 37778496 [TBL] [Abstract][Full Text] [Related]
20. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs. Szabó V; Szabó BT; Orhan K; Veres DS; Manulis D; Ezhov M; Sanders A J Dent; 2024 Aug; 147():105105. PubMed ID: 38821394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]