These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35996332)

  • 1. Artificial Intelligence for Caries Detection: Value of Data and Information.
    Schwendicke F; Cejudo Grano de Oro J; Garcia Cantu A; Meyer-Lueckel H; Chaurasia A; Krois J
    J Dent Res; 2022 Oct; 101(11):1350-1356. PubMed ID: 35996332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-effectiveness of Artificial Intelligence for Proximal Caries Detection.
    Schwendicke F; Rossi JG; Göstemeyer G; Elhennawy K; Cantu AG; Gaudin R; Chaurasia A; Gehrung S; Krois J
    J Dent Res; 2021 Apr; 100(4):369-376. PubMed ID: 33198554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effectiveness of AI for caries detection: randomized trial.
    Schwendicke F; Mertens S; Cantu AG; Chaurasia A; Meyer-Lueckel H; Krois J
    J Dent; 2022 Apr; 119():104080. PubMed ID: 35245626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy.
    Gomez Rossi J; Rojas-Perilla N; Krois J; Schwendicke F
    JAMA Netw Open; 2022 Mar; 5(3):e220269. PubMed ID: 35289862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence for caries detection: Randomized trial.
    Mertens S; Krois J; Cantu AG; Arsiwala LT; Schwendicke F
    J Dent; 2021 Dec; 115():103849. PubMed ID: 34656656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Proximal Secondary Caries Lesions: A Cost-effectiveness Analysis.
    Schwendicke F; Brouwer F; Paris S; Stolpe M
    J Dent Res; 2016 Feb; 95(2):152-9. PubMed ID: 26574493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of artificial intelligence on dentists' gaze during caries detection: A randomized controlled trial.
    Arsiwala-Scheppach LT; Castner NJ; Rohrer C; Mertens S; Kasneci E; Cejudo Grano de Oro JE; Schwendicke F
    J Dent; 2024 Jan; 140():104793. PubMed ID: 38016620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-effectiveness of school-based caries screening using transillumination.
    Schwendicke F; Bombeck L
    J Dent; 2023 Oct; 137():104635. PubMed ID: 37541420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dental student application of artificial intelligence technology in detecting proximal caries lesions.
    Ayan E; Bayraktar Y; Çelik Ç; Ayhan B
    J Dent Educ; 2024 Apr; 88(4):490-500. PubMed ID: 38200405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study.
    Zhu J; Chen Z; Zhao J; Yu Y; Li X; Shi K; Zhang F; Yu F; Shi K; Sun Z; Lin N; Zheng Y
    BMC Oral Health; 2023 Jun; 23(1):358. PubMed ID: 37270488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting and treating occlusal caries lesions: a cost-effectiveness analysis.
    Schwendicke F; Stolpe M; Meyer-Lueckel H; Paris S
    J Dent Res; 2015 Feb; 94(2):272-80. PubMed ID: 25503613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effectiveness of caries excavations in different risk groups - a micro-simulation study.
    Schwendicke F; Paris S; Stolpe M
    BMC Oral Health; 2014 Dec; 14():153. PubMed ID: 25511906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amalgam Alternatives: Cost-Effectiveness and Value of Information Analysis.
    Schwendicke F; Göstemeyer G; Stolpe M; Krois J
    J Dent Res; 2018 Nov; 97(12):1317-1323. PubMed ID: 29928832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning approach for caries detection and segmentation on dental bitewing radiographs.
    Bayrakdar IS; Orhan K; Akarsu S; Çelik Ö; Atasoy S; Pekince A; Yasa Y; Bilgir E; Sağlam H; Aslan AF; Odabaş A
    Oral Radiol; 2022 Oct; 38(4):468-479. PubMed ID: 34807344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and treatment of proximal caries lesions: Milieu-specific cost-effectiveness analysis.
    Schwendicke F; Paris S; Stolpe M
    J Dent; 2015 Jun; 43(6):647-55. PubMed ID: 25862278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dental Caries diagnosis from bitewing images using convolutional neural networks.
    ForouzeshFar P; Safaei AA; Ghaderi F; Hashemikamangar SS
    BMC Oral Health; 2024 Feb; 24(1):211. PubMed ID: 38341526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo.
    Park EY; Jeong S; Kang S; Cho J; Cho JY; Kim EK
    BMC Oral Health; 2023 Dec; 23(1):981. PubMed ID: 38066624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Office Application of Fluoride Gel or Varnish: Cost-Effectiveness and Expected Value of Perfect Information Analysis.
    Schwendicke F; Stolpe M
    Caries Res; 2017; 51(3):231-239. PubMed ID: 28391272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of pulp exposure before caries excavation using artificial intelligence: Deep learning-based image data versus standard dental radiographs.
    Ramezanzade S; Dascalu TL; Ibragimov B; Bakhshandeh A; Bjørndal L
    J Dent; 2023 Nov; 138():104732. PubMed ID: 37778496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs.
    Szabó V; Szabó BT; Orhan K; Veres DS; Manulis D; Ezhov M; Sanders A
    J Dent; 2024 Aug; 147():105105. PubMed ID: 38821394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.