These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35996332)

  • 21. The ADEPT study: a comparative study of dentists' ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software.
    Devlin H; Williams T; Graham J; Ashley M
    Br Dent J; 2021 Oct; 231(8):481-485. PubMed ID: 34686815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting caries lesions of different radiographic extension on bitewings using deep learning.
    Cantu AG; Gehrung S; Krois J; Chaurasia A; Rossi JG; Gaudin R; Elhennawy K; Schwendicke F
    J Dent; 2020 Sep; 100():103425. PubMed ID: 32634466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial Intelligence in Dental Caries Diagnosis and Detection: An Umbrella Review.
    Negi S; Mathur A; Tripathy S; Mehta V; Snigdha NT; Adil AH; Karobari MI
    Clin Exp Dent Res; 2024 Aug; 10(4):e70004. PubMed ID: 39206581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks.
    Moran M; Faria M; Giraldi G; Bastos L; Oliveira L; Conci A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of artificial intelligence software in dental education: A study on assisted proximal caries assessment in bitewing radiographs.
    Schropp L; Sørensen APS; Devlin H; Matzen LH
    Eur J Dent Educ; 2024 May; 28(2):490-496. PubMed ID: 37961027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs.
    Mao YC; Chen TY; Chou HS; Lin SY; Liu SY; Chen YA; Liu YL; Chen CA; Huang YC; Chen SL; Li CW; Abu PAR; Chiang WY
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caries Detection on Intraoral Images Using Artificial Intelligence.
    Kühnisch J; Meyer O; Hesenius M; Hickel R; Gruhn V
    J Dent Res; 2022 Feb; 101(2):158-165. PubMed ID: 34416824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs.
    Bayraktar Y; Ayan E
    Clin Oral Investig; 2022 Jan; 26(1):623-632. PubMed ID: 34173051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost-effectiveness of root caries preventive treatments.
    Schwendicke F; Göstemeyer G
    J Dent; 2017 Jan; 56():58-64. PubMed ID: 27984089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive artificial intelligence framework for dental diagnosis and charting.
    Kabir T; Lee CT; Chen L; Jiang X; Shams S
    BMC Oral Health; 2022 Nov; 22(1):480. PubMed ID: 36352390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AI-Dentify: deep learning for proximal caries detection on bitewing x-ray - HUNT4 Oral Health Study.
    Pérez de Frutos J; Holden Helland R; Desai S; Nymoen LC; Langø T; Remman T; Sen A
    BMC Oral Health; 2024 Mar; 24(1):344. PubMed ID: 38494481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the cost-effectiveness of child dental caries prevention programmes. Are we comparing apples and oranges?
    Anopa Y; Conway DI
    Evid Based Dent; 2020 Mar; 21(1):5-7. PubMed ID: 32221482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying Primary Proximal Caries Lesions in Pediatric Patients From Bitewing Radiographs Using Artificial Intelligence.
    Gonzalez C; Badr Z; Güngör HC; Han S; Hamdan MD
    Pediatr Dent; 2024 Sep; 46(5):332-336. PubMed ID: 39420489
    [No Abstract]   [Full Text] [Related]  

  • 34. Diagnosis of Interproximal Caries Lesions in Bitewing Radiographs Using a Deep Convolutional Neural Network-Based Software.
    García-Cañas Á; Bonfanti-Gris M; Paraíso-Medina S; Martínez-Rus F; Pradíes G
    Caries Res; 2022; 56(5-6):503-511. PubMed ID: 36318884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cost-effectiveness of one- and two-step incomplete and complete excavations.
    Schwendicke F; Stolpe M; Meyer-Lueckel H; Paris S; Dörfer CE
    J Dent Res; 2013 Oct; 92(10):880-7. PubMed ID: 23945975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maintaining pulpal vitality: Cost-effectiveness analysis on carious tissue removal and direct pulp capping.
    Emara R; Krois J; Schwendicke F
    J Dent; 2020 May; 96():103330. PubMed ID: 32259533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct pulp capping after a carious exposure versus root canal treatment: a cost-effectiveness analysis.
    Schwendicke F; Stolpe M
    J Endod; 2014 Nov; 40(11):1764-70. PubMed ID: 25218524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diagnostic accuracy of artificial intelligence-assisted caries detection: a clinical evaluation.
    Zhang JW; Fan J; Zhao FB; Ma B; Shen XQ; Geng YM
    BMC Oral Health; 2024 Sep; 24(1):1095. PubMed ID: 39285427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term cost-effectiveness of glass hybrid versus composite in permanent molars.
    Schwendicke F; Basso M; Markovic D; Turkun LS; Miletić I
    J Dent; 2021 Sep; 112():103751. PubMed ID: 34298114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of caries around restorations on bitewings using deep learning.
    Chaves ET; Vinayahalingam S; van Nistelrooij N; Xi T; Romero VHD; Flügge T; Saker H; Kim A; Lima GDS; Loomans B; Huysmans MC; Mendes FM; Cenci MS
    J Dent; 2024 Apr; 143():104886. PubMed ID: 38342368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.