These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35996585)

  • 1. Radiative-cooling-based nighttime electricity generation with power density exceeding 100 mW/m
    Omair Z; Assawaworrarit S; Fan L; Jin W; Fan S
    iScience; 2022 Aug; 25(8):104858. PubMed ID: 35996585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators.
    Liu Y; Hou S; Wang X; Yin L; Wu Z; Wang X; Mao J; Sui J; Liu X; Zhang Q; Liu Z; Cao F
    Small; 2022 Mar; 18(10):e2106875. PubMed ID: 34984821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting energy from sun, outer space, and soil.
    Tian Y; Liu X; Chen F; Zheng Y
    Sci Rep; 2020 Dec; 10(1):20903. PubMed ID: 33262407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal nighttime electrical power generation via optimal radiative cooling.
    Fan L; Li W; Jin W; Orenstein M; Fan S
    Opt Express; 2020 Aug; 28(17):25460-25470. PubMed ID: 32907066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable All-Day Thermoelectric Power Generation From the Hot Sun and Cold Universe.
    Liu M; Li X; Li L; Zhao S; Zhu J; Zhou T; Lin Z; Li J; Sun B; Pei G; Zhao B; Zou C
    Small; 2024 Aug; 20(35):e2403020. PubMed ID: 38804864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-day uninterrupted thermoelectric generator by simultaneous harvesting of solar heating and radiative cooling.
    Liu J; Li D; Ma W; Chen Y; Dou C; Meng D; He Q; Li X; Deng X; Cai H
    Opt Express; 2023 Apr; 31(9):14495-14508. PubMed ID: 37157313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Nanoporous MgHPO
    Huang X; Li N; Wang J; Liu D; Xu J; Zhang Z; Zhong M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2252-2258. PubMed ID: 31886998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.
    Chen Z; Zhu L; Raman A; Fan S
    Nat Commun; 2016 Dec; 7():13729. PubMed ID: 27959339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly effective photon-to-cooling thermal device.
    Tian Y; Qian L; Liu X; Ghanekar A; Xiao G; Zheng Y
    Sci Rep; 2019 Dec; 9(1):19317. PubMed ID: 31848366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing electrical power through the synergistic utilization of solar and space energy sources.
    Lv S; Bai H; Ren J; Zhang B; Lai Y; Yang J; Chang Z; Xie S; Deng Y; Ji Y
    iScience; 2024 Jun; 27(6):109952. PubMed ID: 38812537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting.
    Li T; Wu M; Xu J; Du R; Yan T; Wang P; Bai Z; Wang R; Wang S
    Nat Commun; 2022 Nov; 13(1):6771. PubMed ID: 36351950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives.
    Tabaie Z; Omidvar A
    Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling.
    Zhu J; An Z; Zhang A; Du Y; Zhou X; Geng Y; Chen G
    iScience; 2022 Apr; 25(4):104126. PubMed ID: 35402873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive directional sub-ambient daytime radiative cooling.
    Bhatia B; Leroy A; Shen Y; Zhao L; Gianello M; Li D; Gu T; Hu J; Soljačić M; Wang EN
    Nat Commun; 2018 Nov; 9(1):5001. PubMed ID: 30479326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric Generator Using Space Cold Source.
    Xia Z; Zhang Z; Meng Z; Ding L; Yu Z
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33941-33945. PubMed ID: 31454218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.