BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35997160)

  • 1. Distribution and evolution of the serine/aspartate racemase family in invertebrates. II. Frequent and widespread parallel evolution of aspartate racemase.
    Uda K; Moe LA
    J Biochem; 2022 Oct; 172(5):303-311. PubMed ID: 35997160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and evolution of the serine/aspartate racemase family in invertebrates.
    Uda K; Abe K; Dehara Y; Mizobata K; Sogawa N; Akagi Y; Saigan M; Radkov AD; Moe LA
    Amino Acids; 2016 Feb; 48(2):387-402. PubMed ID: 26352274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and evolution of the serine/aspartate racemase family in plants.
    Uda K; Edashige Y; Nishimura R; Shikano Y; Matsui T; Radkov AD; Moe LA
    Phytochemistry; 2020 Jan; 169():112164. PubMed ID: 31622858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a novel aspartate/glutamate racemase from the acorn worm Saccoglossus kowalevskii.
    Uda K; Ishizuka N; Edashige Y; Kikuchi A; Radkov AD; Moe LA
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Jun; 232():87-92. PubMed ID: 30902582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple serine loop region regulates the aspartate racemase activity of the serine/aspartate racemase family.
    Uda K; Abe K; Dehara Y; Mizobata K; Edashige Y; Nishimura R; Radkov AD; Moe LA
    Amino Acids; 2017 Oct; 49(10):1743-1754. PubMed ID: 28744579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of D-serine in rice and characterization of rice serine racemase.
    Gogami Y; Ito K; Kamitani Y; Matsushima Y; Oikawa T
    Phytochemistry; 2009 Feb; 70(3):380-7. PubMed ID: 19249065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of rice serine racemase: evidence that Glu219 and Asp225 mediate the effects of Mg2+ on the activity.
    Gogami Y; Kobayashi A; Ikeuchi T; Oikawa T
    Chem Biodivers; 2010 Jun; 7(6):1579-90. PubMed ID: 20564571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the reaction mechanism and intermediate stabilization in mammalian serine racemase using multiscale quantum-classical simulations.
    Nitoker N; Major DT
    Biochemistry; 2015 Jan; 54(2):516-27. PubMed ID: 25493718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel pyridoxal 5'-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system.
    Wang L; Ota N; Romanova EV; Sweedler JV
    J Biol Chem; 2011 Apr; 286(15):13765-74. PubMed ID: 21343289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of the polyamine oxidase gene family in Metazoa.
    Polticelli F; Salvi D; Mariottini P; Amendola R; Cervelli M
    BMC Evol Biol; 2012 Jun; 12():90. PubMed ID: 22716069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic analysis of ionotropic L-glutamate receptor genes in the Bilateria, with special notes on Aplysia californica.
    Greer JB; Khuri S; Fieber LA
    BMC Evol Biol; 2017 Jan; 17(1):11. PubMed ID: 28077092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of GABAA receptor-like genes.
    Tsang SY; Ng SK; Xu Z; Xue H
    Mol Biol Evol; 2007 Feb; 24(2):599-610. PubMed ID: 17135332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insight into gene duplication, gene fusion and domain swapping in the evolution of PLP-independent amino acid racemases.
    Liu L; Iwata K; Yohda M; Miki K
    FEBS Lett; 2002 Sep; 528(1-3):114-8. PubMed ID: 12297289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of the pyridoxal 5'-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme.
    Abe K; Takahashi S; Muroki Y; Kera Y; Yamada RH
    J Biochem; 2006 Feb; 139(2):235-44. PubMed ID: 16452311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative and Evolutionary Analysis of the Interleukin 17 Gene Family in Invertebrates.
    Huang XD; Zhang H; He MX
    PLoS One; 2015; 10(7):e0132802. PubMed ID: 26218896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and divergence of the genes for cytoplasmic, mitochondrial, and flagellar creatine kinases.
    Suzuki T; Mizuta C; Uda K; Ishida K; Mizuta K; Sona S; Compaan DM; Ellington WR
    J Mol Evol; 2004 Aug; 59(2):218-26. PubMed ID: 15486695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia.
    Hauser F; Grimmelikhuijzen CJ
    Gen Comp Endocrinol; 2014 Dec; 209():35-49. PubMed ID: 25058364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of nitric oxide synthases in metazoans.
    González-Domenech CM; Muñoz-Chápuli R
    Comp Biochem Physiol Part D Genomics Proteomics; 2010 Dec; 5(4):295-301. PubMed ID: 20884305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. d-Serine and d-Alanine Regulate Adaptive Foraging Behavior in
    Saitoh Y; Katane M; Miyamoto T; Sekine M; Sakai-Kato K; Homma H
    J Neurosci; 2020 Sep; 40(39):7531-7544. PubMed ID: 32855271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.