BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35997336)

  • 21. Polyamine homeostasis-based strategies for cancer: The role of combination regimens.
    Li QZ; Zuo ZW; Zhou ZR; Ji Y
    Eur J Pharmacol; 2021 Nov; 910():174456. PubMed ID: 34464603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The polyamine analogue N1,N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines.
    Stanic' I; Facchini A; Borzì RM; Stefanelli C; Flamigni F
    J Cell Physiol; 2009 Apr; 219(1):109-16. PubMed ID: 19097065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyamine metabolism in a member of the phylum Microspora (Encephalitozoon cuniculi): effects of polyamine analogues.
    Bacchi CJ; Rattendi D; Faciane E; Yarlett N; Weiss LM; Frydman B; Woster P; Wei B; Marton LJ; Wittner M
    Microbiology (Reading); 2004 May; 150(Pt 5):1215-1224. PubMed ID: 15133083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives.
    Seiler N
    Curr Drug Targets; 2003 Oct; 4(7):565-85. PubMed ID: 14535655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyamine Homeostasis in Development and Disease.
    Nakanishi S; Cleveland JL
    Med Sci (Basel); 2021 May; 9(2):. PubMed ID: 34068137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of a polyamine transport deficient cell line from the human non-small cell lung carcinoma line NCI H157.
    Shao D; Xiao L; Ha HC; Casero RA
    J Cell Physiol; 1996 Jan; 166(1):43-8. PubMed ID: 8557774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy.
    Xie Y; Murray-Stewart T; Wang Y; Yu F; Li J; Marton LJ; Casero RA; Oupický D
    J Control Release; 2017 Jan; 246():110-119. PubMed ID: 28017891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of polyamines in gastric cancer.
    McNamara KM; Gobert AP; Wilson KT
    Oncogene; 2021 Jul; 40(26):4399-4412. PubMed ID: 34108618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer.
    Cui PF; Xing L; Qiao JB; Zhang JL; He YJ; Zhang M; Lyu JY; Luo CQ; Jin L; Jiang HL
    Int J Pharm; 2016 Jun; 506(1-2):79-86. PubMed ID: 27102990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A perspective of polyamine metabolism.
    Wallace HM; Fraser AV; Hughes A
    Biochem J; 2003 Nov; 376(Pt 1):1-14. PubMed ID: 13678416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatin remodeling by polyamines and polyamine analogs.
    Pasini A; Caldarera CM; Giordano E
    Amino Acids; 2014 Mar; 46(3):595-603. PubMed ID: 23836422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A putrescine-anthracene conjugate: a paradigm for selective drug delivery.
    Palmer AJ; Ghani RA; Kaur N; Phanstiel O; Wallace HM
    Biochem J; 2009 Dec; 424(3):431-8. PubMed ID: 19811451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting polyamine transport in Trypanosoma cruzi.
    Reigada C; Phanstiel O; Miranda MR; Pereira CA
    Eur J Med Chem; 2018 Mar; 147():1-6. PubMed ID: 29421567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of polyamine transport by polyamines and polyamine analogs.
    Kramer DL; Miller JT; Bergeron RJ; Khomutov R; Khomutov A; Porter CW
    J Cell Physiol; 1993 May; 155(2):399-407. PubMed ID: 8482732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterising the Response of Human Breast Cancer Cells to Polyamine Modulation.
    Akinyele O; Wallace HM
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34067619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ant 4,4, a polyamine-anthracene conjugate, induces cell death and recovery in human promyelogenous leukemia cells (HL-60).
    Traquete R; Ghani RA; Phanstiel O; Wallace HM
    Amino Acids; 2013 Apr; 44(4):1193-203. PubMed ID: 23292094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases.
    Casero RA; Marton LJ
    Nat Rev Drug Discov; 2007 May; 6(5):373-90. PubMed ID: 17464296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potential of a novel polyamine transport inhibitor in cancer chemotherapy.
    Aziz SM; Gillespie MN; Crooks PA; Tofiq SF; Tsuboi CP; Olson JW; Gosland MP
    J Pharmacol Exp Ther; 1996 Jul; 278(1):185-92. PubMed ID: 8764350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Curcumin mediates polyamine metabolism and sensitizes gastrointestinal cancer cells to antitumor polyamine-targeted therapies.
    Murray-Stewart T; Dunworth M; Lui Y; Giardiello FM; Woster PM; Casero RA
    PLoS One; 2018; 13(8):e0202677. PubMed ID: 30138353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unusual aspects of the polyamine transport system affect the design of strategies for use of polyamine analogues in chemotherapy.
    Mitchell JL; Thane TK; Sequeira JM; Thokala R
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):318-21. PubMed ID: 17371269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.