These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 35997542)
1. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Liu J; Duan S; Shi H; Wang T; Yang X; Huang Y; Wu G; Li Q Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202210753. PubMed ID: 35997542 [TBL] [Abstract][Full Text] [Related]
2. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems. Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202412087. PubMed ID: 39205621 [TBL] [Abstract][Full Text] [Related]
3. Advances in hydrogen production from electrocatalytic seawater splitting. Wang C; Shang H; Jin L; Xu H; Du Y Nanoscale; 2021 May; 13(17):7897-7912. PubMed ID: 33881101 [TBL] [Abstract][Full Text] [Related]
4. Engineering Multilevel Collaborative Catalytic Interfaces with Multifunctional Iron Sites Enabling High-Performance Real Seawater Splitting. Zhang F; Liu Y; Yu F; Pang H; Zhou X; Li D; Ma W; Zhou Q; Mo Y; Zhou H ACS Nano; 2023 Jan; ():. PubMed ID: 36594437 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in direct seawater splitting for producing hydrogen. Xu SW; Li J; Zhang N; Shen W; Zheng Y; Xi P Chem Commun (Camb); 2023 Aug; 59(65):9792-9802. PubMed ID: 37527284 [TBL] [Abstract][Full Text] [Related]
6. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends. Li Y; Xin T; Cao Z; Zheng W; He P; Yoon Suk Lee L ChemSusChem; 2024 Aug; 17(15):e202301926. PubMed ID: 38477449 [TBL] [Abstract][Full Text] [Related]
7. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. Liu Y; Zhou D; Deng T; He G; Chen A; Sun X; Yang Y; Miao P ChemSusChem; 2021 Dec; 14(24):5359-5383. PubMed ID: 34704377 [TBL] [Abstract][Full Text] [Related]
8. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Yu L; Zhu Q; Song S; McElhenny B; Wang D; Wu C; Qin Z; Bao J; Yu Y; Chen S; Ren Z Nat Commun; 2019 Nov; 10(1):5106. PubMed ID: 31704926 [TBL] [Abstract][Full Text] [Related]
9. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910 [TBL] [Abstract][Full Text] [Related]
10. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. Rong C; Dastafkan K; Wang Y; Zhao C Adv Mater; 2023 Dec; 35(49):e2211884. PubMed ID: 37549889 [TBL] [Abstract][Full Text] [Related]
11. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Jiang WJ; Tang T; Zhang Y; Hu JS Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638 [TBL] [Abstract][Full Text] [Related]
12. Guiding Principles for Designing Highly Efficient Metal-Free Carbon Catalysts. Zhang L; Lin CY; Zhang D; Gong L; Zhu Y; Zhao Z; Xu Q; Li H; Xia Z Adv Mater; 2019 Mar; 31(13):e1805252. PubMed ID: 30536475 [TBL] [Abstract][Full Text] [Related]
13. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials. Tian L; Li Z; Song M; Li J Nanoscale; 2021 Jul; 13(28):12088-12101. PubMed ID: 34236371 [TBL] [Abstract][Full Text] [Related]
14. Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting. Wang X; Vasileff A; Jiao Y; Zheng Y; Qiao SZ Adv Mater; 2019 Mar; 31(13):e1803625. PubMed ID: 30276904 [TBL] [Abstract][Full Text] [Related]
15. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Kuang Y; Kenney MJ; Meng Y; Hung WH; Liu Y; Huang JE; Prasanna R; Li P; Li Y; Wang L; Lin MC; McGehee MD; Sun X; Dai H Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6624-6629. PubMed ID: 30886092 [TBL] [Abstract][Full Text] [Related]
16. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. Wang P; Wang B ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246 [TBL] [Abstract][Full Text] [Related]
17. Oxygen-Deficient Cobalt-Based Oxides for Electrocatalytic Water Splitting. Badreldin A; Abusrafa AE; Abdel-Wahab A ChemSusChem; 2021 Jan; 14(1):10-32. PubMed ID: 33053253 [TBL] [Abstract][Full Text] [Related]
18. Noble metal-free hydrogen evolution catalysts for water splitting. Zou X; Zhang Y Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650 [TBL] [Abstract][Full Text] [Related]
19. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. Chang H; Liang Z; Wang L; Wang C Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction. Cui L; Zhang W; Zheng R; Liu J Chemistry; 2020 Sep; 26(51):11661-11672. PubMed ID: 32320104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]