These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 35997551)
1. Enhanced Electrochemiluminescence of A Macrocyclic Tetradentate Chelate Pt(II) Molecule through Its Collisional Interactions with the Electrode. He S; Wang X; Xiang G; Lac K; Wang C; Wang S; Ding Z Chem Asian J; 2022 Oct; 17(20):e202200727. PubMed ID: 35997551 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopy and absolute quantum efficiency of near-infrared electrochemiluminescence for a macrocyclic palladium complex. Zhang C; Zhang R; Zhang R; Zhang Q; Zhang Zhangjunlong Pku Edu Cn JL; Ding Z J Inorg Biochem; 2024 May; 254():112514. PubMed ID: 38422586 [TBL] [Abstract][Full Text] [Related]
3. Boron Nitride Quantum Dots as Efficient Coreactant for Enhanced Electrochemiluminescence of Ruthenium(II) Tris(2,2'-bipyridyl). Xing H; Zhai Q; Zhang X; Li J; Wang E Anal Chem; 2018 Feb; 90(3):2141-2147. PubMed ID: 29268599 [TBL] [Abstract][Full Text] [Related]
4. Absolute Electrochemiluminescence Efficiency Quantification Strategy Exemplified with Ru(bpy) Adsetts JR; Chu K; Hesari M; Ma J; Ding Z Anal Chem; 2021 Aug; 93(33):11626-11633. PubMed ID: 34387457 [TBL] [Abstract][Full Text] [Related]
5. A Grand Avenue to Au Nanocluster Electrochemiluminescence. Hesari M; Ding Z Acc Chem Res; 2017 Feb; 50(2):218-230. PubMed ID: 28080028 [TBL] [Abstract][Full Text] [Related]
6. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO Zhang W; Xiong H; Chen M; Zhang X; Wang S Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332 [TBL] [Abstract][Full Text] [Related]
7. Electrochemiluminescence properties of [Pt2Ag4(C≡CC6H4R)8]n (R = CH3, n = 1; R = H, n = 1 and 2) with amine (TPrA and DBAE) as the coreactant and determination of Sudan I. Wei QH; Han LJ; Jiang Y; Lin XX; Duan YN; Chen GN Inorg Chem; 2012 Oct; 51(20):11117-25. PubMed ID: 23016667 [TBL] [Abstract][Full Text] [Related]
8. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy) Li L; Zhao W; Zhang J; Luo L; Liu X; Li X; You T; Zhao C J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1151-1161. PubMed ID: 34735851 [TBL] [Abstract][Full Text] [Related]
9. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2'-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications. Gai QQ; Wang DM; Huang RF; Liang XX; Wu HL; Tao XY Biosens Bioelectron; 2018 Oct; 118():80-87. PubMed ID: 30056303 [TBL] [Abstract][Full Text] [Related]
10. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant. Kitte SA; Wang C; Li S; Zholudov Y; Qi L; Li J; Xu G Anal Bioanal Chem; 2016 Oct; 408(25):7059-65. PubMed ID: 26942736 [TBL] [Abstract][Full Text] [Related]
11. Ru(bpy) Feng Y; Sun F; Wang N; Lei J; Ju H Anal Chem; 2017 Jul; 89(14):7659-7666. PubMed ID: 28640589 [TBL] [Abstract][Full Text] [Related]
12. Using stannous ion as an excellent inorganic ECL coreactant for tris(2,2'-bipyridyl) ruthenium(II). Zheng L; Wang B; Chi Y; Song S; Fan C; Chen G Dalton Trans; 2012 Feb; 41(5):1630-4. PubMed ID: 22147074 [TBL] [Abstract][Full Text] [Related]
13. Ru(bpy)(3) covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. Zanarini S; Rampazzo E; Ciana LD; Marcaccio M; Marzocchi E; Montalti M; Paolucci F; Prodi L J Am Chem Soc; 2009 Feb; 131(6):2260-7. PubMed ID: 19161304 [TBL] [Abstract][Full Text] [Related]
14. Study of highly efficient bimetallic ruthenium tris-bipyridyl ECL labels for coreactant system. Sun S; Yang Y; Liu F; Pang Y; Fan J; Sun L; Peng X Anal Chem; 2009 Dec; 81(24):10227-31. PubMed ID: 19921833 [TBL] [Abstract][Full Text] [Related]
15. Electrochemiluminescence Based on a Dual Carbon Ultramicroelectrode with Confined Steady-State Annihilation. Wang M; Liu J; Liang X; Gao R; Zhou Y; Nie X; Shao Y; Guan Y; Fu L; Zhang J; Shao Y Anal Chem; 2021 Mar; 93(10):4528-4535. PubMed ID: 33657320 [TBL] [Abstract][Full Text] [Related]
16. Silver-based metal-organic gels as novel coreactant for enhancing electrochemiluminescence and its biosensing potential. Li Y; He L; Huang CZ; Li YF Biosens Bioelectron; 2019 Jun; 134():29-35. PubMed ID: 30954923 [TBL] [Abstract][Full Text] [Related]
17. DNA-Based Nanoswitches: Insights into Electrochemiluminescence Signal Enhancement. Zanut A; Rossetti M; Marcaccio M; Ricci F; Paolucci F; Porchetta A; Valenti G Anal Chem; 2021 Aug; 93(30):10397-10402. PubMed ID: 34213888 [TBL] [Abstract][Full Text] [Related]
18. Electrochemiluminescence at Bare and DNA-Coated Graphite Electrodes in 3D-Printed Fluidic Devices. Bishop GW; Satterwhite-Warden JE; Bist I; Chen E; Rusling JF ACS Sens; 2016; 1(2):197-202. PubMed ID: 27135052 [TBL] [Abstract][Full Text] [Related]
19. Coreactant-Free and Direct Electrochemiluminescence from Dual-Stabilizer-Capped InP/ZnS Nanocrystals: A New Route Involving n-Type Luminophore. Fu L; Gao X; Dong S; Jia J; Xu Y; Wang D; Zou G Anal Chem; 2022 Jan; 94(2):1350-1356. PubMed ID: 34962776 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Electrochemiluminescence from a Stoichiometric Ruthenium(II)-Iridium(III) Complex Soft Salt. Swanick KN; Sandroni M; Ding Z; Zysman-Colman E Chemistry; 2015 May; 21(20):7435-40. PubMed ID: 25735656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]