BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35997565)

  • 1. CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types.
    Zhang P; Wu Y; Zhou H; Zhou B; Zhang H; Wu H
    Bioinformatics; 2022 Sep; 38(19):4497-4504. PubMed ID: 35997565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting CTCF-mediated chromatin loops using CTCF-MP.
    Zhang R; Wang Y; Yang Y; Zhang Y; Ma J
    Bioinformatics; 2018 Jul; 34(13):i133-i141. PubMed ID: 29949986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 5. CCIP: predicting CTCF-mediated chromatin loops with transitivity.
    Wang W; Gao L; Ye Y; Gao Y
    Bioinformatics; 2021 Dec; 37(24):4635-4642. PubMed ID: 34289010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Combinatorial CRISPR inversions of CTCF sites in
    He XL; Li JH; Wu Q
    Yi Chuan; 2021 Aug; 43(8):758-774. PubMed ID: 34413016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types.
    Xu H; Yi X; Fan X; Wu C; Wang W; Chu X; Zhang S; Dong X; Wang Z; Wang J; Zhou Y; Zhao K; Yao H; Zheng N; Wang J; Chen Y; Plewczynski D; Sham PC; Chen K; Huang D; Li MJ
    Patterns (N Y); 2023 Aug; 4(8):100798. PubMed ID: 37602215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features.
    Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W
    Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin Domain Organization of the TCRb Locus and Its Perturbation by Ectopic CTCF Binding.
    Rawat P; Jalan M; Sadhu A; Kanaujia A; Srivastava M
    Mol Cell Biol; 2017 May; 37(9):. PubMed ID: 28137913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of CTCF loop anchor based on machine learning.
    Zhang X; Zhu W; Sun H; Ding Y; Liu L
    Front Genet; 2023; 14():1181956. PubMed ID: 37077544
    [No Abstract]   [Full Text] [Related]  

  • 11. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit flies.
    Wu H; Zhang P; Ai Z; Wei L; Zhang H; Yang F; Cui L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35181793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-quadruplexes associated with R-loops promote CTCF binding.
    Wulfridge P; Yan Q; Rell N; Doherty J; Jacobson S; Offley S; Deliard S; Feng K; Phillips-Cremins JE; Gardini A; Sarma K
    Mol Cell; 2023 Sep; 83(17):3064-3079.e5. PubMed ID: 37552993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator.
    Yang D; Chung T; Kim D
    Bioinformatics; 2022 Jul; 38(14):3501-3512. PubMed ID: 35640981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops.
    Guo Y; Perez AA; Hazelett DJ; Coetzee GA; Rhie SK; Farnham PJ
    Genome Biol; 2018 Oct; 19(1):160. PubMed ID: 30296942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure.
    Trieu T; Martinez-Fundichely A; Khurana E
    Genome Biol; 2020 Mar; 21(1):79. PubMed ID: 32216817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loop competition and extrusion model predicts CTCF interaction specificity.
    Xi W; Beer MA
    Nat Commun; 2021 Feb; 12(1):1046. PubMed ID: 33594051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jpx RNA regulates CTCF anchor site selection and formation of chromosome loops.
    Oh HJ; Aguilar R; Kesner B; Lee HG; Kriz AJ; Chu HP; Lee JT
    Cell; 2021 Dec; 184(25):6157-6173.e24. PubMed ID: 34856126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.