These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35997662)

  • 1. Spreading the Landscape of Dual Ion Batteries: from Electrode to Electrolyte.
    Liu M; Zhang W; Zheng W
    ChemSusChem; 2023 Feb; 16(4):e202201375. PubMed ID: 35997662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Stability of Graphite Electrode as Cathode for Dual-Ion Batteries.
    Zhao Y; Xue K; Tan T; Yu DYW
    ChemSusChem; 2023 Feb; 16(4):e202201221. PubMed ID: 35968880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Aqueous/Nonaqueous Water-in-Bisalt Electrolyte Enables Safe Dual Ion Batteries.
    Zhu J; Xu Y; Fu Y; Xiao D; Li Y; Liu L; Wang Y; Zhang Q; Li J; Yan X
    Small; 2020 Apr; 16(17):e1905838. PubMed ID: 32227436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental Understanding and Optimization Strategies for Dual-Ion Batteries: A Review.
    Chen C; Lee CS; Tang Y
    Nanomicro Lett; 2023 May; 15(1):121. PubMed ID: 37127729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A PF
    Jiang H; Han X; Du X; Chen Z; Lu C; Li X; Zhang H; Zhao J; Han P; Cui G
    Adv Mater; 2022 Mar; 34(9):e2108665. PubMed ID: 34951488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penne-Like MoS
    Zhu H; Zhang F; Li J; Tang Y
    Small; 2018 Mar; 14(13):e1703951. PubMed ID: 29399964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentrated Electrolyte for High-Performance Ca-Ion Battery Based on Organic Anode and Graphite Cathode.
    Li J; Han C; Ou X; Tang Y
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202116668. PubMed ID: 34994498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries.
    Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Dual-Ion Batteries with High-Capacity Negative Electrodes Incorporating Black Phosphorus.
    Wrogemann JM; Haneke L; Ramireddy T; Frerichs JE; Sultana I; Chen YI; Brink F; Hansen MR; Winter M; Glushenkov AM; Placke T
    Adv Sci (Weinh); 2022 Jul; 9(20):e2201116. PubMed ID: 35474449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Low-Temperature Dual-Ion Batteries.
    Yu D; Li K; Ma G; Ru F; Zhang X; Luo W; Hu P; Chen D; Wang H
    ChemSusChem; 2023 Feb; 16(4):e202201595. PubMed ID: 36504344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries.
    Li WH; Ning QL; Xi XT; Hou BH; Guo JZ; Yang Y; Chen B; Wu XL
    Adv Mater; 2019 Jan; 31(4):e1804766. PubMed ID: 30489656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemistry-Driven Interphase Doubly Protects Graphite Cathodes for Ultralong Life and Fast Charge of Dual-Ion Batteries.
    Zhang K; Li D; Shao J; Jiang Y; Lv L; Shi Q; Qu Q; Zheng H
    ChemSusChem; 2023 Jul; 16(13):e202300324. PubMed ID: 36922346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse Dual-Ion Battery via a ZnCl
    Wu X; Xu Y; Zhang C; Leonard DP; Markir A; Lu J; Ji X
    J Am Chem Soc; 2019 Apr; 141(15):6338-6344. PubMed ID: 30917652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Functional Electrolytes Towards Commercial Dual-Ion Batteries.
    Jiang H; Chen Z; Yang Y; Fan C; Zhao J; Cui G
    ChemSusChem; 2023 Feb; 16(4):e202201561. PubMed ID: 36098496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries.
    Ejigu A; Le Fevre LW; Fujisawa K; Terrones M; Forsyth AJ; Dryfe RAW
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23261-23270. PubMed ID: 31252480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte.
    Wu H; Hu T; Chang S; Li L; Yuan W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44254-44265. PubMed ID: 34519196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.