BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35997827)

  • 1. Protein secondary structure assignment using residual networks.
    Antony JV; Koya R; Pournami PN; Nair GG; Balakrishnan JP
    J Mol Model; 2022 Aug; 28(9):269. PubMed ID: 35997827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assigning secondary structure in proteins using AI.
    Antony JV; Madhu P; Balakrishnan JP; Yadav H
    J Mol Model; 2021 Aug; 27(9):252. PubMed ID: 34402969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
    Si D; Moritz SA; Pfab J; Hou J; Cao R; Wang L; Wu T; Cheng J
    Sci Rep; 2020 Mar; 10(1):4282. PubMed ID: 32152330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Protein Secondary Structure Assignment from C
    Saqib MN; Kryś JD; Gront D
    Biomolecules; 2022 Jun; 12(6):. PubMed ID: 35740966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.
    Guo Z; Hou J; Cheng J
    Proteins; 2021 Feb; 89(2):207-217. PubMed ID: 32893403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepSS2GO: protein function prediction from secondary structure.
    Song FV; Su J; Huang S; Zhang N; Li K; Ni M; Liao M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.
    Heffernan R; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Contact Map Prediction Based on ResNet and DenseNet.
    Li Z; Lin Y; Elofsson A; Yao Y
    Biomed Res Int; 2020; 2020():7584968. PubMed ID: 32337273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning and Its Applications in Biomedicine.
    Cao C; Liu F; Tan H; Song D; Shu W; Li W; Zhou Y; Bo X; Xie Z
    Genomics Proteomics Bioinformatics; 2018 Feb; 16(1):17-32. PubMed ID: 29522900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods.
    Martin J; Letellier G; Marin A; Taly JF; de Brevern AG; Gibrat JF
    BMC Struct Biol; 2005 Sep; 5():17. PubMed ID: 16164759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction.
    Shapovalov M; Dunbrack RL; Vucetic S
    PLoS One; 2020; 15(5):e0232528. PubMed ID: 32374785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Structure Prediction: Conventional and Deep Learning Perspectives.
    Jisna VA; Jayaraj PB
    Protein J; 2021 Aug; 40(4):522-544. PubMed ID: 34050498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.