These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35997847)

  • 1. Graphene and graphene nanohybrid composites-based electrodes for physiological sensing applications.
    Gandhi B; Raghava NS
    Biomed Microdevices; 2022 Aug; 24(3):29. PubMed ID: 35997847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.
    Liu B; Chen Y; Luo Z; Zhang W; Tu Q; Jin X
    J Biomater Sci Polym Ed; 2015; 26(16):1229-35. PubMed ID: 26268887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.
    Jung HC; Moon JH; Baek DH; Lee JH; Choi YY; Hong JS; Lee SH
    IEEE Trans Biomed Eng; 2012 May; 59(5):1472-9. PubMed ID: 22410324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Carbon Nanotube-Based Polymer Electrode for Long-Term Electrocardiographic Recording.
    Chi M; Zhao J; Dong Y; Wang X
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30909577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes.
    Aval LF; Ghoranneviss M; Pour GB
    Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PDMS-based microneedle array electrode for long-term ECG recording.
    Wang R; Bai J; Zhu X; Li Z; Cheng L; Zhang G; Zhang W
    Biomed Microdevices; 2022 Aug; 24(3):27. PubMed ID: 35953589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors.
    Barkauskas J; Mikoliunaite L; Paklonskaite I; Genys P; Petroniene JJ; Morkvenaite-Vilkonciene I; Ramanaviciene A; Samukaite-Bubniene U; Ramanavicius A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():515-523. PubMed ID: 30813053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Conductivity and Reduced Settling Time of Carbon-Based Electrodes By Addition of Sea Salt for Wearable Application.
    Noh Y; Ye X; Murphy L; Eaton-Robb C; Dimitrov T; Choi WJ; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1291-1294. PubMed ID: 30440627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring.
    Lou C; Li R; Li Z; Liang T; Wei Z; Run M; Yan X; Liu X
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.
    Reyes BA; Posada-Quintero HF; Bales JR; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1691-4. PubMed ID: 25570300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive carbon-based nanohybrid sensor platform for determination of 5-hydroxytryptamine receptor agonist (Eletriptan).
    Kaya SI; Demirkan B; Bakirhan NK; Kuyuldar E; Kurbanoglu S; Ozkan SA; Sen F
    J Pharm Biomed Anal; 2019 Sep; 174():206-213. PubMed ID: 31176930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.
    Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK
    ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene.
    Thangamuthu M; Gabriel WE; Santschi C; Martin OJF
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29518901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life.
    Posada-Quintero HF; Reyes BA; Burnham K; Pennace J; Chon KH
    Ann Biomed Eng; 2015 Oct; 43(10):2374-82. PubMed ID: 25691400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-contact electrocardiogram measuring method based on capacitance coupling electrodes with ultra-high input impedance.
    Li J; Wang Y; Li C; Xu Z; Zhao Z; Raza SA; Wang Y
    Rev Sci Instrum; 2022 Mar; 93(3):034101. PubMed ID: 35365001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-Enabled Electrodes for Electrocardiogram Monitoring.
    Celik N; Manivannan N; Strudwick A; Balachandran W
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid.
    Guan JF; Zou J; Liu YP; Jiang XY; Yu JG
    Ecotoxicol Environ Saf; 2020 Sep; 201():110872. PubMed ID: 32559693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z; Shi F; Lu L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1058-64. PubMed ID: 22264121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-based self-adhesive polymer electrodes for wireless long-term recording of electrocardiogram signals.
    Liu B; Luo Z; Zhang W; Tu Q; Jin X
    J Biomater Sci Polym Ed; 2016 Dec; 27(18):1899-1908. PubMed ID: 27659794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.