These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35997958)

  • 1. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues.
    Zheng X; Mi J; Balakrishna A; Liew KX; Ablazov A; Sougrat R; Al-Babili S
    Plant Biotechnol J; 2022 Nov; 20(11):2202-2216. PubMed ID: 35997958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system.
    Martí M; Diretto G; Aragonés V; Frusciante S; Ahrazem O; Gómez-Gómez L; Daròs JA
    Metab Eng; 2020 Sep; 61():238-250. PubMed ID: 32629020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verbascum species as a new source of saffron apocarotenoids and molecular tools for the biotechnological production of crocins and picrocrocin.
    Morote L; Rubio-Moraga Á; López Jiménez AJ; Aragonés V; Diretto G; Demurtas OC; Frusciante S; Ahrazem O; Daròs JA; Gómez-Gómez L
    Plant J; 2024 Apr; 118(1):58-72. PubMed ID: 38100533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme.
    Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L
    New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of apocarotenoid modifiers and carotenogenic enzymes for biosynthesis of crocins in Buddleja davidii flowers.
    Diretto G; López-Jiménez AJ; Ahrazem O; Frusciante S; Song J; Rubio-Moraga Á; Gómez-Gómez L
    J Exp Bot; 2021 Apr; 72(8):3200-3218. PubMed ID: 33544822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (
    López-Jimenez AJ; Frusciante S; Niza E; Ahrazem O; Rubio-Moraga Á; Diretto G; Gómez-Gómez L
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis.
    Frusciante S; Diretto G; Bruno M; Ferrante P; Pietrella M; Prado-Cabrero A; Rubio-Moraga A; Beyer P; Gomez-Gomez L; Al-Babili S; Giuliano G
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12246-51. PubMed ID: 25097262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of Bixa orellana cleavage dioxygenase 4-3 drives crocin but not bixin biosynthesis.
    Frusciante S; Demurtas OC; Sulli M; Mini P; Aprea G; Diretto G; Karcher D; Bock R; Giuliano G
    Plant Physiol; 2022 Mar; 188(3):1469-1482. PubMed ID: 34919714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering high levels of saffron apocarotenoids in tomato.
    Ahrazem O; Diretto G; Rambla JL; Rubio-Moraga Á; Lobato-Gómez M; Frusciante S; Argandoña J; Presa S; Granell A; Gómez-Gómez L
    Hortic Res; 2022; 9():uhac074. PubMed ID: 35669709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments.
    Demurtas OC; Frusciante S; Ferrante P; Diretto G; Azad NH; Pietrella M; Aprea G; Taddei AR; Romano E; Mi J; Al-Babili S; Frigerio L; Giuliano G
    Plant Physiol; 2018 Jul; 177(3):990-1006. PubMed ID: 29844227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LC-MS-Based Profiling Provides New Insights into Apocarotenoid Biosynthesis and Modifications in Citrus Fruits.
    Zheng X; Mi J; Deng X; Al-Babili S
    J Agric Food Chem; 2021 Feb; 69(6):1842-1851. PubMed ID: 33543938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals.
    Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L
    PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Engineering of Crocin Biosynthesis in
    Ahrazem O; Zhu C; Huang X; Rubio-Moraga A; Capell T; Christou P; Gómez-Gómez L
    Front Plant Sci; 2022; 13():861140. PubMed ID: 35350302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus).
    Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L
    New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Escherichia coli cell factories for crocin biosynthesis.
    Wang W; He P; Zhao D; Ye L; Dai L; Zhang X; Sun Y; Zheng J; Bi C
    Microb Cell Fact; 2019 Jul; 18(1):120. PubMed ID: 31277660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus.
    Ahrazem O; Argandoña J; Fiore A; Rujas A; Rubio-Moraga Á; Castillo R; Gómez-Gómez L
    BMC Genomics; 2019 Apr; 20(1):320. PubMed ID: 31029081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives.
    Castillo R; Fernández JA; Gómez-Gómez L
    Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Liang N; Yao MD; Wang Y; Liu J; Feng L; Wang ZM; Li XY; Xiao WH; Yuan YJ
    J Agric Food Chem; 2021 Oct; 69(39):11626-11636. PubMed ID: 34554747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.
    Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L
    Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Biosynthesis of Non-Endogenous Apocarotenoids in Transgenic
    Huang X; Morote L; Zhu C; Ahrazem O; Capell T; Christou P; Gómez-Gómez L
    Metabolites; 2022 Jun; 12(7):. PubMed ID: 35888700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.