Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 35998185)

  • 1. Applying a CT texture analysis model trained with deep-learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis.
    Wang Q; Xu S; Zhang G; Zhang X; Gu J; Yang S; Zeng M; Zhang Z
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13759. PubMed ID: 35998185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: impact of image reconstructions on diagnostic performance.
    Schwyzer M; Martini K; Benz DC; Burger IA; Ferraro DA; Kudura K; Treyer V; von Schulthess GK; Kaufmann PA; Huellner MW; Messerli M
    Eur Radiol; 2020 Apr; 30(4):2031-2040. PubMed ID: 31822970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low-dose CT lung screening with artificial intelligence iterative reconstruction: evaluation via automatic nodule-detection software.
    Yang L; Liu H; Han J; Xu S; Zhang G; Wang Q; Du Y; Yang F; Zhao X; Shi G
    Clin Radiol; 2023 Jul; 78(7):525-531. PubMed ID: 36948944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.
    Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F
    Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic CT of colorectal cancer with artificial intelligence iterative reconstruction: A clinical evaluation.
    Li J; Zhu J; Zou Y; Zhang G; Zhu P; Wang N; Xie P
    Eur J Radiol; 2024 Feb; 171():111301. PubMed ID: 38237522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.
    Venkadesh KV; Setio AAA; Schreuder A; Scholten ET; Chung K; W Wille MM; Saghir Z; van Ginneken B; Prokop M; Jacobs C
    Radiology; 2021 Aug; 300(2):438-447. PubMed ID: 34003056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using neighborhood gray tone difference matrix texture features on dual time point PET/CT images to differentiate malignant from benign FDG-avid solitary pulmonary nodules.
    Chen S; Harmon S; Perk T; Li X; Chen M; Li Y; Jeraj R
    Cancer Imaging; 2019 Aug; 19(1):56. PubMed ID: 31420006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simple Method to Train the AI Diagnosis Model of Pulmonary Nodules.
    He Z; Lv W; Hu J
    Comput Math Methods Med; 2020; 2020():2812874. PubMed ID: 32802147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative analysis of computed tomography texture features between pulmonary inflammatory nodules and lung cancer].
    E LN; Zhang N; Wang RH; Wu ZF
    Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):847-850. PubMed ID: 30481937
    [No Abstract]   [Full Text] [Related]  

  • 10. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images.
    Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W
    Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a deep learning-based method to diagnose pulmonary ground-glass nodules by sequential computed tomography imaging.
    Qiu Z; Wu Q; Wang S; Chen Z; Lin F; Zhou Y; Jin J; Xian J; Tian J; Li W
    Thorac Cancer; 2022 Feb; 13(4):602-612. PubMed ID: 34994091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning for the Classification of Small (≤2 cm) Pulmonary Nodules on CT Imaging: A Preliminary Study.
    Chae KJ; Jin GY; Ko SB; Wang Y; Zhang H; Choi EJ; Choi H
    Acad Radiol; 2020 Apr; 27(4):e55-e63. PubMed ID: 31780395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and external validation of a multimodal integrated feature neural network (MIFNN) for the diagnosis of malignancy in small pulmonary nodules (≤10 mm).
    Yang R; Zhang Y; Li W; Li Q; Liu X; Zhang F; Liang Z; Huang J; Li X; Tao L; Guo X
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38684143
    [No Abstract]   [Full Text] [Related]  

  • 14. Deep-learning reconstruction for ultra-low-dose lung CT: Volumetric measurement accuracy and reproducibility of artificial ground-glass nodules in a phantom study.
    Mikayama R; Shirasaka T; Kojima T; Sakai Y; Yabuuchi H; Kondo M; Kato T
    Br J Radiol; 2022 Feb; 95(1130):20210915. PubMed ID: 34908478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules.
    Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG
    Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The value of radiomics based on dual-energy CT for differentiating benign from malignant solitary pulmonary nodules.
    Liang G; Yu W; Liu SQ; Xie MG; Liu M
    BMC Med Imaging; 2022 May; 22(1):95. PubMed ID: 35597900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture.
    Ferreira JR; Oliveira MC; de Azevedo-Marques PM
    J Digit Imaging; 2018 Aug; 31(4):451-463. PubMed ID: 29047033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive evaluation for benign and malignant subcentimeter pulmonary ground-glass nodules (≤1 cm) based on CT texture analysis.
    Hu X; Ye W; Li Z; Chen C; Cheng S; Lv X; Weng W; Li J; Weng Q; Pang P; Xu M; Chen M; Ji J
    Br J Radiol; 2020 Oct; 93(1114):20190762. PubMed ID: 32686958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of benign and malignant lung nodules from CT images based on hybrid features.
    Zhang G; Yang Z; Gong L; Jiang S; Wang L
    Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of positron emission tomography/computed tomography and chest thin-layer high-resolution computed tomography for evaluation of pulmonary nodules: Correlation with imaging features, maximum standardized uptake value, and pathology.
    Hou S; Lin X; Wang S; Shen Y; Meng Z; Jia Q; Tan J
    Medicine (Baltimore); 2018 Aug; 97(31):e11640. PubMed ID: 30075545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.