These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35998200)
41. Bioaccumulation of microcystins in seston, zooplankton and fish: A case study in Lake Zumpango, Mexico. Zamora-Barrios CA; Nandini S; Sarma SSS Environ Pollut; 2019 Jun; 249():267-276. PubMed ID: 30897466 [TBL] [Abstract][Full Text] [Related]
42. DISTRIBUTION OF OLIGOPEPTIDE CHEMOTYPES OF THE CYANOBACTERIUM PLANKTOTHRIX AND THEIR PERSISTENCE IN SELECTED LAKES IN FENNOSCANDIA(1). Rohrlack T; Skulberg R; Skulberg OM J Phycol; 2009 Dec; 45(6):1259-65. PubMed ID: 27032581 [TBL] [Abstract][Full Text] [Related]
43. Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Pawlik-Skowrońska B; Toporowska M; Mazur-Marzec H Environ Sci Pollut Res Int; 2019 Apr; 26(12):11793-11804. PubMed ID: 30815809 [TBL] [Abstract][Full Text] [Related]
44. Metagenome-Assembled Genome Sequences of Raphidiopsis raciborskii and Planktothrix agardhii from a Cyanobacterial Bloom in Kissena Lake, New York, USA. Martin RM; Kausch M; Yap K; Wehr JD; Boyer GL; Wilhelm SW Microbiol Resour Announc; 2021 Jan; 10(2):. PubMed ID: 33446598 [No Abstract] [Full Text] [Related]
45. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Chaffin JD; Davis TW; Smith DJ; Baer MM; Dick GJ Harmful Algae; 2018 Mar; 73():84-97. PubMed ID: 29602509 [TBL] [Abstract][Full Text] [Related]
46. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Zhang Q; Zhang Z; Lu T; Peijnenburg WJGM; Gillings M; Yang X; Chen J; Penuelas J; Zhu YG; Zhou NY; Su J; Qian H Commun Biol; 2020 Dec; 3(1):737. PubMed ID: 33277584 [TBL] [Abstract][Full Text] [Related]
47. Taxonomic and Genotypical Heterogeneity of Microcystin degrading Bacterioplankton in Western Lake Erie. Krishnan A; Zhang Y; Balaban M; Seo Y; Mou X Harmful Algae; 2020 Sep; 98():101895. PubMed ID: 33129453 [TBL] [Abstract][Full Text] [Related]
48. Early and late cyanobacterial bloomers in a shallow, eutrophic lake. Painter KJ; Venkiteswaran JJ; Simon DF; Vo Duy S; Sauvé S; Baulch HM Environ Sci Process Impacts; 2022 Aug; 24(8):1212-1227. PubMed ID: 35833582 [TBL] [Abstract][Full Text] [Related]
50. Presence of Planktothrix sp. and cyanobacterial toxins in Lake Ammersee, Germany and their impact on whitefish (Coregonus lavaretus L.). Ernst B; Hitzfeld B; Dietrich D Environ Toxicol; 2001; 16(6):483-8. PubMed ID: 11769245 [TBL] [Abstract][Full Text] [Related]
51. Estimating microcystin levels at recreational sites in western Lake Erie and Ohio. Francy DS; Brady AM; Ecker CD; Graham JL; Stelzer EA; Struffolino P; Dwyer DF; Loftin KA Harmful Algae; 2016 Sep; 58():23-34. PubMed ID: 28073455 [TBL] [Abstract][Full Text] [Related]
52. Functional Analysis of the Endopeptidase and Holin From Meng LH; Ke F; Zhang QY; Zhao Z Front Microbiol; 2022; 13():849492. PubMed ID: 35572663 [TBL] [Abstract][Full Text] [Related]
53. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Walls JT; Wyatt KH; Doll JC; Rubenstein EM; Rober AR Sci Total Environ; 2018 Jan; 610-611():786-795. PubMed ID: 28826116 [TBL] [Abstract][Full Text] [Related]
54. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain. Rounge TB; Rohrlack T; Nederbragt AJ; Kristensen T; Jakobsen KS BMC Genomics; 2009 Aug; 10():396. PubMed ID: 19706155 [TBL] [Abstract][Full Text] [Related]
55. Cloning of some heat shock proteins genes for further transcriptional study of Planktothrix agardhii exposed to abiotic stress. Tran CT; Bernard C; Comte K Folia Microbiol (Praha); 2015 Jul; 60(4):317-23. PubMed ID: 25540131 [TBL] [Abstract][Full Text] [Related]
56. Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys. Harke MJ; Davis TW; Watson SB; Gobler CJ Environ Sci Technol; 2016 Jan; 50(2):604-15. PubMed ID: 26654276 [TBL] [Abstract][Full Text] [Related]
57. Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Derot J; Yajima H; Jacquet S Harmful Algae; 2020 Nov; 99():101906. PubMed ID: 33218452 [TBL] [Abstract][Full Text] [Related]
58. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Gobler CJ; Burkholder JM; Davis TW; Harke MJ; Johengen T; Stow CA; Van de Waal DB Harmful Algae; 2016 Apr; 54():87-97. PubMed ID: 28073483 [TBL] [Abstract][Full Text] [Related]
59. Perennial toxigenic Planktothrix agardhii bloom in selected lakes of Western Poland. Mankiewicz-Boczek J; Gągała I; Kokociński M; Jurczak T; Stefaniak K Environ Toxicol; 2011 Feb; 26(1):10-20. PubMed ID: 19658169 [TBL] [Abstract][Full Text] [Related]
60. Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (Cyanobacterium) population. Briand E; Gugger M; François JC; Bernard C; Humbert JF; Quiblier C Appl Environ Microbiol; 2008 Jun; 74(12):3839-48. PubMed ID: 18441113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]