These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35998346)

  • 1. Small Charging Energies and
    Ten Kate SC; Ritter MF; Fuhrer A; Jung J; Schellingerhout SG; Bakkers EPAM; Riel H; Nichele F
    Nano Lett; 2022 Sep; 22(17):7049-7056. PubMed ID: 35998346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of anisotropic g-factors for electrons in InSb nanowire quantum dots.
    Mu J; Huang S; Wang JY; Huang GY; Wang X; Xu HQ
    Nanotechnology; 2021 Jan; 32(2):020002. PubMed ID: 32987368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field.
    Máthé L; Grosu I
    Beilstein J Nanotechnol; 2020; 11():225-239. PubMed ID: 32082962
    [No Abstract]   [Full Text] [Related]  

  • 4. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot.
    Fasth C; Fuhrer A; Samuelson L; Golovach VN; Loss D
    Phys Rev Lett; 2007 Jun; 98(26):266801. PubMed ID: 17678116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic Pauli Spin Blockade of Holes in a GaAs Double Quantum Dot.
    Wang DQ; Klochan O; Hung JT; Culcer D; Farrer I; Ritchie DA; Hamilton AR
    Nano Lett; 2016 Dec; 16(12):7685-7689. PubMed ID: 27960447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic Pauli Spin-Blockade Effect and Spin-Orbit Interaction Field in an InAs Nanowire Double Quantum Dot.
    Wang JY; Huang GY; Huang S; Xue J; Pan D; Zhao J; Xu H
    Nano Lett; 2018 Aug; 18(8):4741-4747. PubMed ID: 29987931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneto-Optical Characterization of Trions in Symmetric InP-Based Quantum Dots for Quantum Communication Applications.
    Rudno-Rudziński W; Burakowski M; Reithmaier JP; Musiał A; Benyoucef M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotropic and Anisotropic g-Factor Corrections in GaAs Quantum Dots.
    Camenzind LC; Svab S; Stano P; Yu L; Zimmerman JD; Gossard AC; Loss D; Zumbühl DM
    Phys Rev Lett; 2021 Jul; 127(5):057701. PubMed ID: 34397233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the Kondo effect in a spin-3/2 hole quantum dot.
    Klochan O; Micolich AP; Hamilton AR; Trunov K; Reuter D; Wieck AD
    Phys Rev Lett; 2011 Aug; 107(7):076805. PubMed ID: 21902417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device.
    Deng MT; Yu CL; Huang GY; Larsson M; Caroff P; Xu HQ
    Sci Rep; 2014 Dec; 4():7261. PubMed ID: 25434375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous Zero-Field Splitting for Hole Spin Qubits in Si and Ge Quantum Dots.
    Hetényi B; Bosco S; Loss D
    Phys Rev Lett; 2022 Sep; 129(11):116805. PubMed ID: 36154408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiwall carbon nanotubes as quantum dots.
    Buitelaar MR; Bachtold A; Nussbaumer T; Iqbal M; Schönenberger C
    Phys Rev Lett; 2002 Apr; 88(15):156801. PubMed ID: 11955211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic
    Zhang T; Liu H; Gao F; Xu G; Wang K; Zhang X; Cao G; Wang T; Zhang J; Hu X; Li HO; Guo GP
    Nano Lett; 2021 May; 21(9):3835-3842. PubMed ID: 33914549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kondo effect in carbon nanotube quantum dots with spin-orbit coupling.
    Fang TF; Zuo W; Luo HG
    Phys Rev Lett; 2008 Dec; 101(24):246805. PubMed ID: 19113647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal transport signatures in two-electron molecular quantum dots: gate-tunable Hund's rule, underscreened Kondo effect and quantum phase transitions.
    Florens S; Freyn A; Roch N; Wernsdorfer W; Balestro F; Roura-Bas P; Aligia AA
    J Phys Condens Matter; 2011 Jun; 23(24):243202. PubMed ID: 21625035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin selective pseudogap Kondo effect in a double quantum dot interferometer with Rashba interaction.
    Stefański P
    J Phys Condens Matter; 2013 Feb; 25(8):085303. PubMed ID: 23370331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Control of the Zeeman Spin Splitting in Two-Dimensional Hole Systems.
    Marcellina E; Srinivasan A; Miserev DS; Croxall AF; Ritchie DA; Farrer I; Sushkov OP; Culcer D; Hamilton AR
    Phys Rev Lett; 2018 Aug; 121(7):077701. PubMed ID: 30169055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.
    Fan D; Li S; Kang N; Caroff P; Wang LB; Huang YQ; Deng MT; Yu CL; Xu HQ
    Nanoscale; 2015 Sep; 7(36):14822-8. PubMed ID: 26308470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipeak Kondo effect in one- and two-electron quantum dots.
    Vidan A; Stopa M; Westervelt RM; Hanson M; Gossard AC
    Phys Rev Lett; 2006 Apr; 96(15):156802. PubMed ID: 16712183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.