BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35998542)

  • 1. Oncolytic avian reovirus σA-modulated fatty acid metabolism through the PSMB6/Akt/SREBP1/acetyl-CoA carboxylase pathway to increase energy production for virus replication.
    Hsu CY; Chen YH; Huang WR; Huang JW; Chen IC; Chang YK; Wang CY; Chang CD; Liao TL; Nielsen BL; Liu HJ
    Vet Microbiol; 2022 Oct; 273():109545. PubMed ID: 35998542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avian reovirus σA-modulated suppression of lactate dehydrogenase and upregulation of glutaminolysis and the mTOC1/eIF4E/HIF-1α pathway to enhance glycolysis and the TCA cycle for virus replication.
    Chi PI; Huang WR; Chiu HC; Li JY; Nielsen BL; Liu HJ
    Cell Microbiol; 2018 Dec; 20(12):e12946. PubMed ID: 30156372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncolytic Avian Reovirus σA-Modulated Upregulation of the HIF-1α/C-myc/glut1 Pathway to Produce More Energy in Different Cancer Cell Lines Benefiting Virus Replication.
    Hsu CY; Huang JW; Huang WR; Chen IC; Chen MS; Liao TL; Chang YK; Munir M; Liu HJ
    Viruses; 2023 Feb; 15(2):. PubMed ID: 36851737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avian reovirus p17 and σA act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6.
    Huang WR; Chi PI; Chiu HC; Hsu JL; Nielsen BL; Liao TL; Liu HJ
    Sci Rep; 2017 Jul; 7(1):5226. PubMed ID: 28701787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p17-Modulated Hsp90/Cdc37 Complex Governs Oncolytic Avian Reovirus Replication by Chaperoning p17, Which Promotes Viral Protein Synthesis and Accumulation of Viral Proteins σC and σA in Viral Factories.
    Huang WR; Li JY; Wu YY; Liao TL; Nielsen BL; Liu HJ
    J Virol; 2022 Mar; 96(6):e0007422. PubMed ID: 35107368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the activation of the PI3K/Akt pathway by the motif of
    Xie L; Xie Z; Wang S; Deng X; Xie Z
    Innate Immun; 2020 May; 26(4):312-318. PubMed ID: 31779497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine-Tuning Lipid Metabolism by Targeting Mitochondria-Associated Acetyl-CoA-Carboxylase 2 in
    Valvo V; Iesato A; Kavanagh TR; Priolo C; Zsengeller Z; Pontecorvi A; Stillman IE; Burke SD; Liu X; Nucera C
    Thyroid; 2021 Sep; 31(9):1335-1358. PubMed ID: 33107403
    [No Abstract]   [Full Text] [Related]  

  • 8. SGIV Induced and Exploited Cellular De Novo Fatty Acid Synthesis for Virus Entry and Replication.
    Zheng Q; Huang Y; Wang L; Zhang Y; Guo X; Huang X; Qin Q
    Viruses; 2022 Jan; 14(2):. PubMed ID: 35215774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallus NME/NM23 nucleoside diphosphate kinase 2 interacts with viral σA and affects the replication of avian reovirus.
    Xie L; Wang S; Xie Z; Wang X; Wan L; Deng X; Xie Z; Luo S; Zeng T; Zhang M; Fan Q; Huang J; Zhang Y; Li M
    Vet Microbiol; 2021 Jan; 252():108926. PubMed ID: 33223234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avian Reovirus σA Protein Inhibits Type I Interferon Production by Abrogating Interferon Regulatory Factor 7 Activation.
    Gao L; Liu R; Luo D; Li K; Qi X; Liu C; Zhang Y; Cui H; Wang S; Gao Y; Wang X
    J Virol; 2023 Jan; 97(1):e0178522. PubMed ID: 36511697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription.
    Zhao LF; Iwasaki Y; Zhe W; Nishiyama M; Taguchi T; Tsugita M; Kambayashi M; Hashimoto K; Terada Y
    Endocr J; 2010; 57(4):317-24. PubMed ID: 20139635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetyl-CoA carboxylase 2-/- mutant mice are protected against fatty liver under high-fat, high-carbohydrate dietary and de novo lipogenic conditions.
    Abu-Elheiga L; Wu H; Gu Z; Bressler R; Wakil SJ
    J Biol Chem; 2012 Apr; 287(15):12578-88. PubMed ID: 22362781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway.
    Xie L; Xie Z; Huang L; Fan Q; Luo S; Huang J; Deng X; Xie Z; Zeng T; Zhang Y; Wang S
    Arch Virol; 2016 Aug; 161(8):2243-8. PubMed ID: 27233800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism.
    Dai W; Xiang W; Han L; Yuan Z; Wang R; Ma Y; Yang Y; Cai S; Xu Y; Mo S; Li Q; Cai G
    Cancer Commun (Lond); 2022 Sep; 42(9):848-867. PubMed ID: 35904817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal.
    Abu-Elheiga L; Matzuk MM; Kordari P; Oh W; Shaikenov T; Gu Z; Wakil SJ
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12011-6. PubMed ID: 16103361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular chaperone TRiC governs avian reovirus replication by protecting outer-capsid protein σC and inner core protein σA and non-structural protein σNS from ubiquitin- proteasome degradation.
    Huang WR; Li JY; Liao TL; Yeh CM; Wang CY; Wen HW; Hu NJ; Wu YY; Hsu CY; Chang YK; Chang CD; Nielsen BL; Liu HJ
    Vet Microbiol; 2022 Jan; 264():109277. PubMed ID: 34826648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncolytic Avian Reovirus p17-Modulated Inhibition of mTORC1 by Enhancement of Endogenous mTORC1 Inhibitors Binding to mTORC1 To Disrupt Its Assembly and Accumulation on Lysosomes.
    Li JY; Huang WR; Liao TL; Nielsen BL; Liu HJ
    J Virol; 2022 Sep; 96(17):e0083622. PubMed ID: 35946936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease.
    Du C; Wu M; Liu H; Ren Y; Du Y; Wu H; Wei J; Liu C; Yao F; Wang H; Zhu Y; Duan H; Shi Y
    Int J Biochem Cell Biol; 2016 Oct; 79():1-13. PubMed ID: 27497988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals.
    Harwood HJ; Petras SF; Shelly LD; Zaccaro LM; Perry DA; Makowski MR; Hargrove DM; Martin KA; Tracey WR; Chapman JG; Magee WP; Dalvie DK; Soliman VF; Martin WH; Mularski CJ; Eisenbeis SA
    J Biol Chem; 2003 Sep; 278(39):37099-111. PubMed ID: 12842871
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Stüve P; Minarrieta L; Erdmann H; Arnold-Schrauf C; Swallow M; Guderian M; Krull F; Hölscher A; Ghorbani P; Behrends J; Abraham WR; Hölscher C; Sparwasser TD; Berod L
    Front Immunol; 2018; 9():495. PubMed ID: 29675017
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.