BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35998613)

  • 1. Using Metadynamics To Explore the Free Energy of Dewetting in Biologically Relevant Nanopores.
    Nordquist EB; Schultz SA; Chen J
    J Phys Chem B; 2022 Sep; 126(34):6428-6437. PubMed ID: 35998613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric-field-induced wetting and dewetting in single hydrophobic nanopores.
    Powell MR; Cleary L; Davenport M; Shea KJ; Siwy ZS
    Nat Nanotechnol; 2011 Oct; 6(12):798-802. PubMed ID: 22036811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic dewetting in gating and regulation of transmembrane protein ion channels.
    Yazdani M; Jia Z; Chen J
    J Chem Phys; 2020 Sep; 153(11):110901. PubMed ID: 32962356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of effective polarization on ion and water interactions within a biomimetic nanopore.
    Phan LX; Lynch CI; Crain J; Sansom MSP; Tucker SJ
    Biophys J; 2022 Jun; 121(11):2014-2026. PubMed ID: 35527400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inner pore hydration free energy controls the activation of big potassium channels.
    Nordquist EB; Jia Z; Chen J
    Biophys J; 2023 Apr; 122(7):1158-1167. PubMed ID: 36774534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models.
    Lynch CI; Klesse G; Rao S; Tucker SJ; Sansom MSP
    ACS Nano; 2021 Dec; 15(12):19098-19108. PubMed ID: 34784172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heuristic derived from analysis of the ion channel structural proteome permits the rapid identification of hydrophobic gates.
    Rao S; Klesse G; Stansfeld PJ; Tucker SJ; Sansom MSP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13989-13995. PubMed ID: 31235590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS.
    Anishkin A; Sukharev S
    Biophys J; 2004 May; 86(5):2883-95. PubMed ID: 15111405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulation studies of hydrophobic gating in nanopores and ion channels.
    Trick JL; Aryal P; Tucker SJ; Sansom MS
    Biochem Soc Trans; 2015 Apr; 43(2):146-50. PubMed ID: 25849908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water and hydrophobic gates in ion channels and nanopores.
    Rao S; Lynch CI; Klesse G; Oakley GE; Stansfeld PJ; Tucker SJ; Sansom MSP
    Faraday Discuss; 2018 Sep; 209(0):231-247. PubMed ID: 29969132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-vapor oscillations of water in hydrophobic nanopores.
    Beckstein O; Sansom MS
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7063-8. PubMed ID: 12740433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy of hydrophilic and hydrophobic pores in lipid bilayers by free energy perturbation of a restraint.
    Dixit M; Lazaridis T
    J Chem Phys; 2020 Aug; 153(5):054101. PubMed ID: 32770888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic gating in ion channels.
    Aryal P; Sansom MS; Tucker SJ
    J Mol Biol; 2015 Jan; 427(1):121-30. PubMed ID: 25106689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a hydrophobic barrier within biomimetic nanopores.
    Trick JL; Wallace EJ; Bayley H; Sansom MS
    ACS Nano; 2014 Nov; 8(11):11268-79. PubMed ID: 25317664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced Polarization in Molecular Dynamics Simulations of the 5-HT
    Klesse G; Rao S; Tucker SJ; Sansom MSP
    J Am Chem Soc; 2020 May; 142(20):9415-9427. PubMed ID: 32336093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential-induced wetting and dewetting in pH-responsive block copolymer membranes for mass transport control.
    Kwon SR; Baek S; Bohn PW
    Faraday Discuss; 2022 Apr; 233(0):283-294. PubMed ID: 34904977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
    Beckstein O; Sansom MS
    Phys Biol; 2004 Jun; 1(1-2):42-52. PubMed ID: 16204821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic solution against dewetting in a highly hydrophobic nanopore.
    Picaud F; Paris G; Gharbi T; Balme S; Lepoitevin M; Tangaraj V; Bechelany M; Janot JM; Balanzat E; Henn F
    Soft Matter; 2016 Jun; 12(22):4903-11. PubMed ID: 27157717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrophobic entrance enhances ion current rectification and induces dewetting in asymmetric nanopores.
    Pevarnik M; Healy K; Davenport M; Yen J; Siwy ZS
    Analyst; 2012 Jul; 137(13):2944-50. PubMed ID: 22396951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.