These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35998760)

  • 1. From Individual Liquid Films to Macroscopic Foam Dynamics: A Comparison between Polymers and a Nonionic Surfactant.
    Mikhailovskaya A; Chatzigiannakis E; Renggli D; Vermant J; Monteux C
    Langmuir; 2022 Sep; 38(35):10768-10780. PubMed ID: 35998760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foaming of Transient Polymer Hydrogels.
    Deleurence R; Saison T; Lequeux F; Monteux C
    ACS Omega; 2018 Feb; 3(2):1864-1870. PubMed ID: 31458499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in foam collapse and thin film stability with constant interfacial and bulk properties.
    Wierenga PA; Basheva ES; Delahaije RJBM
    Adv Colloid Interface Sci; 2023 Feb; 312():102845. PubMed ID: 36709573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and stability of CO2-in-water foams with nonionic hydrocarbon surfactants.
    Adkins SS; Chen X; Chan I; Torino E; Nguyen QP; Sanders AW; Johnston KP
    Langmuir; 2010 Apr; 26(8):5335-48. PubMed ID: 20345107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions.
    Yaminsky VV; Ohnishi S; Vogler EA; Horn RG
    Langmuir; 2010 Jun; 26(11):8061-74. PubMed ID: 20146434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superchaotropic nano-ions as foam stabilizers.
    Hohenschutz M; Grillo I; Dewhurst C; Schmid P; Girard L; Jonchère A; Diat O; Bauduin P
    J Colloid Interface Sci; 2021 Dec; 603():141-147. PubMed ID: 34186391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Shear on Pumped Capillary Foams.
    Okesanjo O; Meredith JC; Behrens SH
    Ind Eng Chem Res; 2023 May; 62(18):7031-7039. PubMed ID: 37191909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence In Draining Foams Made of Very Small Bubbles.
    Briceño-Ahumada Z; Drenckhan W; Langevin D
    Phys Rev Lett; 2016 Mar; 116(12):128302. PubMed ID: 27058106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap.
    Narayan S; Makhnenko I; Moravec DB; Hauser BG; Dallas AJ; Dutcher CS
    Langmuir; 2020 Aug; 36(33):9827-9842. PubMed ID: 32693603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Apr; 16(16):3981-3990. PubMed ID: 32250379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drainage and Coalescence in Standing Foams.
    Bhakta A; Ruckenstein E
    J Colloid Interface Sci; 1997 Jul; 191(1):184-201. PubMed ID: 9241219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time scales for drainage and imbibition in gellified foams: application to decontamination processes.
    Deleurence R; Saison T; Lequeux F; Monteux C
    Soft Matter; 2015 Sep; 11(35):7032-7. PubMed ID: 26246375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Film and Interfacial Tensions in Emulsion and Foam Systems.
    Kim YH; Koczo K; Wasan DT
    J Colloid Interface Sci; 1997 Mar; 187(1):29-44. PubMed ID: 9245313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.
    Alzobaidi S; Da C; Tran V; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2017 Feb; 488():79-91. PubMed ID: 27821342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of aqueous foam in microscale.
    Anazadehsayed A; Rezaee N; Naser J; Nguyen AV
    Adv Colloid Interface Sci; 2018 Jun; 256():203-229. PubMed ID: 29747852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imidazolium based ionic liquid stabilized foams for conformance control: bulk and porous scale investigation.
    Sakthivel S; Babu Salin R
    RSC Adv; 2021 Sep; 11(47):29711-29727. PubMed ID: 35479573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear modulus and yield stress of foams: contribution of interfacial elasticity.
    Völp AR; Willenbacher N
    Soft Matter; 2021 Apr; 17(14):3937-3944. PubMed ID: 33721011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the difference between foams stabilized by surfactants and whole casein or beta-casein. comparison of foams, foam films, and liquid surfaces studies.
    Maldonado-Valderrama J; Langevin D
    J Phys Chem B; 2008 Apr; 112(13):3989-96. PubMed ID: 18324808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.