These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35998885)

  • 21. Connection Map for Compounds (CMC): A Server for Combinatorial Drug Toxicity and Efficacy Analysis.
    Liu L; Tsompana M; Wang Y; Wu D; Zhu L; Zhu R
    J Chem Inf Model; 2016 Sep; 56(9):1615-21. PubMed ID: 27508329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mCSM-membrane: predicting the effects of mutations on transmembrane proteins.
    Pires DEV; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W147-W153. PubMed ID: 32469063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. mmCSM-NA: accurately predicting effects of single and multiple mutations on protein-nucleic acid binding affinity.
    Nguyen TB; Myung Y; de Sá AGC; Pires DEV; Ascher DB
    NAR Genom Bioinform; 2021 Dec; 3(4):lqab109. PubMed ID: 34805992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest.
    Bhadra P; Yan J; Li J; Fong S; Siu SWI
    Sci Rep; 2018 Jan; 8(1):1697. PubMed ID: 29374199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches.
    Mora JR; Marrero-Ponce Y; García-Jacas CR; Suarez Causado A
    Chem Res Toxicol; 2020 Jul; 33(7):1855-1873. PubMed ID: 32406679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ADENet: a novel network-based inference method for prediction of drug adverse events.
    Yu Z; Wu Z; Li W; Liu G; Tang Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.
    Robinson MC; Glen RC; Lee AA
    J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemical-protein interactions.
    Fang J; Li Y; Liu R; Pang X; Li C; Yang R; He Y; Lian W; Liu AL; Du GH
    J Chem Inf Model; 2015 Jan; 55(1):149-64. PubMed ID: 25531792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability.
    Rodrigues CH; Pires DE; Ascher DB
    Nucleic Acids Res; 2018 Jul; 46(W1):W350-W355. PubMed ID: 29718330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations.
    Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2021 Jan; 30(1):60-69. PubMed ID: 32881105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures.
    Pires DE; Blundell TL; Ascher DB
    J Med Chem; 2015 May; 58(9):4066-72. PubMed ID: 25860834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural Analysis and Identification of Colloidal Aggregators in Drug Discovery.
    Yang ZY; Yang ZJ; Dong J; Wang LL; Zhang LX; Ding JJ; Ding XQ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2019 Sep; 59(9):3714-3726. PubMed ID: 31430151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational determination of hERG-related cardiotoxicity of drug candidates.
    Lee HM; Yu MS; Kazmi SR; Oh SY; Rhee KH; Bae MA; Lee BH; Shin DS; Oh KS; Ceong H; Lee D; Na D
    BMC Bioinformatics; 2019 May; 20(Suppl 10):250. PubMed ID: 31138104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mycoCSM: Using Graph-Based Signatures to Identify Safe Potent Hits against Mycobacteria.
    Pires DEV; Ascher DB
    J Chem Inf Model; 2020 Jul; 60(7):3450-3456. PubMed ID: 32615035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PharmaNet: Pharmaceutical discovery with deep recurrent neural networks.
    Ruiz Puentes P; Valderrama N; González C; Daza L; Muñoz-Camargo C; Cruz JC; Arbeláez P
    PLoS One; 2021; 16(4):e0241728. PubMed ID: 33901196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches.
    Sharma AK; Srivastava GN; Roy A; Sharma VK
    Front Pharmacol; 2017; 8():880. PubMed ID: 29249969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. dendPoint: a web resource for dendrimer pharmacokinetics investigation and prediction.
    Kaminskas LM; Pires DEV; Ascher DB
    Sci Rep; 2019 Oct; 9(1):15465. PubMed ID: 31664080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The in silico identification of human bile salt export pump (ABCB11) inhibitors associated with cholestatic drug-induced liver injury.
    Xi L; Yao J; Wei Y; Wu X; Yao X; Liu H; Li S
    Mol Biosyst; 2017 Jan; 13(2):417-424. PubMed ID: 28092392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identify Compounds' Target Against Alzheimer's Disease Based on In-Silico Approach.
    Hu Y; Zhou G; Zhang C; Zhang M; Chen Q; Zheng L; Niu B
    Curr Alzheimer Res; 2019; 16(3):193-208. PubMed ID: 30605059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.