These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35998896)

  • 1. Profiling prediction of nuclear receptor modulators with multi-task deep learning methods: toward the virtual screening.
    Wang J; Lou C; Liu G; Li W; Wu Z; Tang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35998896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Image-Based Prediction Models of Nuclear Receptor Agonists and Antagonists Using the DeepSnap-Deep Learning Approach with the Tox21 10K Library.
    Matsuzaka Y; Uesawa Y
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32549344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity.
    Penvose A; Keenan JL; Bray D; Ramlall V; Siggers T
    Nat Commun; 2019 Jun; 10(1):2514. PubMed ID: 31175293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
    Zhang L; Sedykh A; Tripathi A; Zhu H; Afantitis A; Mouchlis VD; Melagraki G; Rusyn I; Tropsha A
    Toxicol Appl Pharmacol; 2013 Oct; 272(1):67-76. PubMed ID: 23707773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles.
    Park SJ; Kufareva I; Abagyan R
    J Comput Aided Mol Des; 2010 May; 24(5):459-71. PubMed ID: 20455005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and
    Geoffrey A S B; Madaj R; Valluri PP
    J Biomol Struct Dyn; 2023 Mar; 41(5):1790-1797. PubMed ID: 35007471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound profiling using a panel of steroid hormone receptor cell-based assays.
    Wilkinson JM; Hayes S; Thompson D; Whitney P; Bi K
    J Biomol Screen; 2008 Sep; 13(8):755-65. PubMed ID: 18753690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear receptor drug discovery.
    Chen T
    Curr Opin Chem Biol; 2008 Aug; 12(4):418-26. PubMed ID: 18662801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning.
    Matsuzaka Y; Hosaka T; Ogaito A; Yoshinari K; Uesawa Y
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32183141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minireview: Not picking pockets: nuclear receptor alternate-site modulators (NRAMs).
    Moore TW; Mayne CG; Katzenellenbogen JA
    Mol Endocrinol; 2010 Apr; 24(4):683-95. PubMed ID: 19933380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families.
    Zhang ZM; Guan ZX; Wang F; Zhang D; Ding H
    Med Chem; 2020; 16(5):594-604. PubMed ID: 31584374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of endocrine and metabolism disrupting xenobiotics in milk-derived fat samples by fluorescent protein-tagged nuclear receptors and live cell imaging.
    Thakur K; Goud ESK; Jawa Y; Keswani C; Onteru S; Singh D; Singh SP; Roy P; Tyagi RK
    Toxicol Mech Methods; 2023 May; 33(4):293-306. PubMed ID: 36154553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of ligand binding pockets on nuclear receptors by machine learning methods.
    Oak N; Jayaraman VK
    Protein Pept Lett; 2014; 21(8):808-14. PubMed ID: 23855664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advantages of cell-based high-volume screening assays to assess nuclear receptor activation during drug discovery.
    Pinne M; Raucy JL
    Expert Opin Drug Discov; 2014 Jun; 9(6):669-86. PubMed ID: 24819724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing deep learning based classifiers with inpainting anatomical side markers (L/R markers) for multi-center trials.
    Kim KD; Cho K; Kim M; Lee KH; Lee S; Lee SM; Lee KH; Kim N
    Comput Methods Programs Biomed; 2022 Jun; 220():106705. PubMed ID: 35462346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning.
    Lee K; Kim D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31703452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains.
    Wu W; Niles EG; Hirai H; LoVerde PT
    BMC Evol Biol; 2007 Feb; 7():27. PubMed ID: 17319953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-activity relationship of nuclear receptor-ligand interactions.
    Greschik H; Moras D
    Curr Top Med Chem; 2003; 3(14):1573-99. PubMed ID: 14683516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors.
    Choura M; Rebaï A
    Biol Direct; 2010 Oct; 5():58. PubMed ID: 20937105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.