BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35998986)

  • 1. MOF-derived AuNS/LDH with high adsorption ability for surface enhanced Raman spectroscopy detection.
    Cong T; Zhang Y; Huang H; Zhao Y; Li C; Fan Z; Pan L
    Anal Chim Acta; 2022 Sep; 1224():340201. PubMed ID: 35998986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon Near-Field Coupling of Bimetallic Nanostars and a Hierarchical Bimetallic SERS "Hot Field": Toward Ultrasensitive Simultaneous Detection of Multiple Cardiorenal Syndrome Biomarkers.
    Su Y; Xu S; Zhang J; Chen X; Jiang LP; Zheng T; Zhu JJ
    Anal Chem; 2019 Jan; 91(1):864-872. PubMed ID: 30499654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS.
    Zhai K; Sun L; Nguyen THD; Lin M
    J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS-active Ag Nanostars Substrates for Sensitive Detection of Ethyl Carbamate in Wine.
    Li M; Zhao Y; Cui M; Wang C; Song Q
    Anal Sci; 2016; 32(7):725-8. PubMed ID: 27396651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer.
    Mahmoud AYF; Rusin CJ; McDermott MT
    Analyst; 2020 Feb; 145(4):1396-1407. PubMed ID: 32016204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering.
    Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY
    Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room-temperature sensor based on surface-enhanced Raman spectroscopy.
    Yang KH; Mai FD; Yu CC; Liu YC
    Analyst; 2014 Oct; 139(20):5164-9. PubMed ID: 25112170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting.
    Garg A; Nam W; Zhou W
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56290-56299. PubMed ID: 33283507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice.
    Sun L; Yu Z; Lin M
    Analyst; 2019 Aug; 144(16):4820-4825. PubMed ID: 31282496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
    Masterson AN; Hati S; Ren G; Liyanage T; Manicke NE; Goodpaster JV; Sardar R
    Anal Chem; 2021 Feb; 93(4):2578-2588. PubMed ID: 33432809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection.
    Li J; Yan H; Tan X; Lu Z; Han H
    Anal Chem; 2019 Mar; 91(6):3885-3892. PubMed ID: 30793591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.