BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35999001)

  • 1. Highly sensitive α-hemolysin nanopore detection of MUC1 based on 3D DNA walker.
    Tian R; Yin B; Liu D; Liu Q; Chen S; Li M; Wang L; Zhou S; Wang D
    Anal Chim Acta; 2022 Aug; 1223():340193. PubMed ID: 35999001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A magnetic DNAzyme walker for both in-situ imaging and sensitive detection of MUC1 on living cells.
    Kan A; Ding S; Zhang N; Jiang W
    Talanta; 2023 May; 257():124374. PubMed ID: 36841017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aptamer-assisted biological nanopore biosensor for ultra-sensitive detection of ochratoxin A with a portable single-molecule measuring instrument.
    Li T; Su Z; Li Y; Xi L; Li G
    Talanta; 2022 Oct; 248():123619. PubMed ID: 35671547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Click Chemistry Reaction-Triggered 3D DNA Walking Machine for Sensitive Electrochemical Detection of Copper Ion.
    Qing M; Xie S; Cai W; Tang D; Tang Y; Zhang J; Yuan R
    Anal Chem; 2018 Oct; 90(19):11439-11445. PubMed ID: 30175577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles.
    Liu S; Xu N; Tan C; Fang W; Tan Y; Jiang Y
    Anal Chim Acta; 2018 Aug; 1018():86-93. PubMed ID: 29605139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Nanopore Sensing of Mucin 1 and Circulating Tumor Cells in Whole Blood of Breast Cancer Patients by Analyte-Triggered Triplex-DNA Release.
    Sun K; Chen P; Yan S; Yuan W; Wang Y; Li X; Dou L; Zhao C; Zhang J; Wang Q; Fu Z; Wei L; Xin Z; Tang Z; Yan Y; Peng Y; Ying B; Chen J; Geng J
    ACS Appl Mater Interfaces; 2021 May; 13(18):21030-21039. PubMed ID: 33905228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current pulse signature of native kanamycin aptamer and its implication for molecular interactions on a single protein nanopore sensing interface.
    Shi HQ; Ma Y; Wang YH; Fang F; Wu ZY
    Biosens Bioelectron; 2022 Apr; 201():113966. PubMed ID: 35016110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective and sensitive electrochemical biosensor for ATP based on the dual strategy integrating the cofactor-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection.
    Lu L; Si JC; Gao ZF; Zhang Y; Lei JL; Luo HQ; Li NB
    Biosens Bioelectron; 2015 Jan; 63():14-20. PubMed ID: 25048448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoclusters-based fluorescent biosensing strategy for determination of mucin 1: Combination of exonuclease I-assisted target recycling and graphene oxide-assisted hybridization chain reaction.
    Wu H; Wu J; Liu Y; Wang H; Zou P
    Anal Chim Acta; 2020 Sep; 1129():40-48. PubMed ID: 32891389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore.
    Wen S; Zeng T; Liu L; Zhao K; Zhao Y; Liu X; Wu HC
    J Am Chem Soc; 2011 Nov; 133(45):18312-7. PubMed ID: 21995430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Sensing of Human 8-Oxoguanine DNA Glycosylase Activity with a Nanopore.
    Shang J; Li Z; Liu L; Xi D; Wang H
    ACS Sens; 2018 Feb; 3(2):512-518. PubMed ID: 29363311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-noise ratiometric fluorescence biosensor for detection of Pb
    Jin H; Liu R; Bai T; Wei M; He B; Suo Z
    Anal Bioanal Chem; 2022 Feb; 414(5):1899-1907. PubMed ID: 34993597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rolling circle amplification-assisted DNA walker triggered by multiple DNAzyme cores for highly sensitive electrochemical biosensing.
    Wang S; Ji Y; Fu H; Ju H; Lei J
    Analyst; 2019 Jan; 144(2):691-697. PubMed ID: 30516182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive Zn(2+) sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures.
    Liu N; Hou R; Gao P; Lou X; Xia F
    Analyst; 2016 Jun; 141(12):3626-9. PubMed ID: 26911926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein.
    Huang Y; Chen J; Zhao S; Shi M; Chen ZF; Liang H
    Anal Chem; 2013 May; 85(9):4423-30. PubMed ID: 23534943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical aptasensor based on intelligent walking DNA nanomachine with cascade signal amplification powered by nuclease for Mucin 1 assay.
    Li ZY; Li Y; Huang L; Hu R; Yang T; Yang YH
    Anal Chim Acta; 2022 Jun; 1214():339964. PubMed ID: 35649642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive detection of MUC1 by microchip electrophoresis combining with target recycling amplification and strand displacement amplification.
    Geng X; Chen J; Chu Z; Zhang J; Zhang F; Wang Q
    J Pharm Biomed Anal; 2022 Sep; 219():114967. PubMed ID: 35914507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme.
    Zhu S; Wang X; Jing C; Yin Y; Zhou N
    Mikrochim Acta; 2019 Feb; 186(3):176. PubMed ID: 30771011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule porphyrin-metal ion interaction and sensing application.
    Wei K; Yao F; Kang XF
    Biosens Bioelectron; 2018 Jun; 109():272-278. PubMed ID: 29571164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrochemical method based on CRISPR-Cas12a and enzymatic reaction for the highly sensitive detection of tumor marker MUC1 mucin.
    Jin Z; Xiao W; Shen L; Shi X; Li J
    Analyst; 2024 Jun; ():. PubMed ID: 38912896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.