These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35999238)

  • 1. Arctic sea-ice loss is projected to lead to more frequent strong El Niño events.
    Liu J; Song M; Zhu Z; Horton RM; Hu Y; Xie SP
    Nat Commun; 2022 Aug; 13(1):4952. PubMed ID: 35999238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin.
    Hu C; Yang S; Wu Q; Li Z; Chen J; Deng K; Zhang T; Zhang C
    Nat Commun; 2016 Jun; 7():11721. PubMed ID: 27251873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Arctic sea-ice variability on Pacific trade winds.
    Kennel CF; Yulaeva E
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2824-2834. PubMed ID: 31988128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sea ice variability and trends in the Indian Ocean sector of Antarctica: Interaction with ENSO and SAM.
    Yadav J; Kumar A; Srivastava A; Mohan R
    Environ Res; 2022 Sep; 212(Pt D):113481. PubMed ID: 35588776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Future extreme sea level seesaws in the tropical Pacific.
    Widlansky MJ; Timmermann A; Cai W
    Sci Adv; 2015 Sep; 1(8):e1500560. PubMed ID: 26601272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arctic-Eurasian climate linkage induced by tropical ocean variability.
    Matsumura S; Kosaka Y
    Nat Commun; 2019 Aug; 10(1):3441. PubMed ID: 31371710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speedier Arctic data as warm winter shrinks sea ice.
    Witze A
    Nature; 2016 Mar; 531(7592):15-6. PubMed ID: 26935673
    [No Abstract]   [Full Text] [Related]  

  • 8. Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures.
    Jeong H; Park HS; Stuecker MF; Yeh SW
    Sci Adv; 2022 Jan; 8(4):eabl8278. PubMed ID: 35080975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal evolution of sea ice and its teleconnections with large-scale climate indices over Antarctica.
    Swathi M; Kumar A; Mohan R
    Mar Pollut Bull; 2023 Mar; 188():114634. PubMed ID: 36724668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of ice and law in Arctic marine accessibility.
    Lynch AH; Norchi CH; Li X
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2202720119. PubMed ID: 35727968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arctic's sea ice cover: trends, variability, predictability, and comparisons to the Antarctic.
    Serreze MC; Meier WN
    Ann N Y Acad Sci; 2019 Jan; 1436(1):36-53. PubMed ID: 29806697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent enhancement of central Pacific El Niño variability relative to last eight centuries.
    Liu Y; Cobb KM; Song H; Li Q; Li CY; Nakatsuka T; An Z; Zhou W; Cai Q; Li J; Leavitt SW; Sun C; Mei R; Shen CC; Chan MH; Sun J; Yan L; Lei Y; Ma Y; Li X; Chen D; Linderholm HW
    Nat Commun; 2017 May; 8():15386. PubMed ID: 28555638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Indian Ocean Dipole and El Niño Southern Oscillation as major drivers of coral cover on shallow reefs in the Andaman Sea.
    Dunne RP; Brown BE; Phongsuwan N; Putchim L
    Glob Chang Biol; 2021 Jul; 27(14):3312-3323. PubMed ID: 33844871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of recent and future climate change on spring Arctic cyclones.
    Parker CL; Mooney PA; Webster MA; Boisvert LN
    Nat Commun; 2022 Nov; 13(1):6514. PubMed ID: 36351898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More extreme swings of the South Pacific convergence zone due to greenhouse warming.
    Cai W; Lengaigne M; Borlace S; Collins M; Cowan T; McPhaden MJ; Timmermann A; Power S; Brown J; Menkes C; Ngari A; Vincent EM; Widlansky MJ
    Nature; 2012 Aug; 488(7411):365-9. PubMed ID: 22895343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over-projected Pacific warming and extreme El Niño frequency due to CMIP5 common biases.
    Tang T; Luo JJ; Peng K; Qi L; Tang S
    Natl Sci Rev; 2021 Oct; 8(10):nwab056. PubMed ID: 34858609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections.
    Santoso A; McGregor S; Jin FF; Cai W; England MH; An SI; McPhaden MJ; Guilyardi E
    Nature; 2013 Dec; 504(7478):126-30. PubMed ID: 24240279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. El Niño in a changing climate.
    Yeh SW; Kug JS; Dewitte B; Kwon MH; Kirtman BP; Jin FF
    Nature; 2009 Sep; 461(7263):511-4. PubMed ID: 19779449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arctic sea ice and climate change--will the ice disappear in this century?
    Johannessen OM; Miles MW
    Sci Prog; 2000; 83 ( Pt 3)():209-22. PubMed ID: 11077477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.