These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35999287)

  • 1. Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure.
    Jiao Z; Huyan W; Yang F; Yao J; Tan R; Chen P; Tao X; Yao Z; Zhou J; Liu P
    Nanomicro Lett; 2022 Aug; 14(1):173. PubMed ID: 35999287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitative preparation of graphene/cellulose aerogels with tunable microwave absorption properties for ultra-lightweight applications.
    Du L; Li Y; Zhou Q; Zhang L; Shi T; Wang X; Zhang J; Zhao J; Wang J; Fan X
    J Colloid Interface Sci; 2024 Oct; 679(Pt A):987-994. PubMed ID: 39418901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced microwave absorption.
    Hang T; Zhou L; Li Z; Zheng Y; Yao Y; Cao Y; Xu C; Jiang S; Chen Y; Zheng J
    Carbohydr Polym; 2024 Apr; 329():121777. PubMed ID: 38286548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of nitrogen-doped reduced graphene oxide/hollow copper ferrite composite aerogels as lightweight, thin and high-efficiency electromagnetic wave absorbers in the X band.
    Liu B; Xu J; Wan Z; Shu R
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):712-720. PubMed ID: 36027781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior Microwave Absorption Properties Derived from the Unique 3D Porous Heterogeneous Structure of a CoS@Fe
    Liu H; Li L; Wang X; Cui G; Lv X
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33065999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design.
    Xu Y; Lin Z; Yang Y; Duan H; Zhao G; Liu Y; Hu Y; Sun R; Wong CP
    Mater Horiz; 2022 Feb; 9(2):708-719. PubMed ID: 34850791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Lightweight Renewable Microwave-Absorbing Bio-Polyurethane/Fe
    Xu X; Tian X; Bo G; Su X; Yan J; Yan Y
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial π-π Interactions Induced Ultralight, 300 °C-Stable, Wideband Graphene/Polyaramid Foam for Electromagnetic Wave Absorption in Both Gigahertz and Terahertz Bands.
    Cheng Z; Wang R; Cao Y; Zhang Z; Ma W; Zhang T; Fan F; Huang Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3218-3232. PubMed ID: 34985242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption.
    Hu Q; Yang R; Yang S; Huang W; Zeng Z; Gui X
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10577-10587. PubMed ID: 35188369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties.
    Lv H; Liang X; Ji G; Zhang H; Du Y
    ACS Appl Mater Interfaces; 2015 May; 7(18):9776-83. PubMed ID: 25881334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing a Microstructure of NiCo-LDH@CNTs@Carbon Foam for Efficient Electromagnetic Wave Absorption and Excellent Environmental Tolerance.
    Liu M; He Q; Yuan S; Huang H; Huang P; Kou X; Zhao Y
    ACS Appl Mater Interfaces; 2024 Sep; 16(35):46634-46645. PubMed ID: 39178173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight TiO
    He M; Liao Q; Zhou Y; Song Z; Wang Y; Feng S; Xu R; Peng H; Chen X; Kang Y
    Langmuir; 2022 Jan; 38(3):945-956. PubMed ID: 35019654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route.
    Zhao HB; Fu ZB; Chen HB; Zhong ML; Wang CY
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1468-77. PubMed ID: 26710881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternating Multilayered Si
    Cai Z; Su L; Wang H; Niu M; Tao L; Lu D; Xu L; Li M; Gao H
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16704-16712. PubMed ID: 33797879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoS
    Yang J; Wang J; Li H; Wu Z; Xing Y; Chen Y; Liu L
    Adv Sci (Weinh); 2022 Mar; 9(7):e2101988. PubMed ID: 35068057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an Ultra-Wideband Transparent Wave Absorber.
    Dai H; Li S; Dong P; Ma Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of hierarchical porous nitrogen-doped reduced graphene oxide/zinc ferrite composite foams as ultrathin and broadband microwave absorbers.
    Shu R; Xu J; Wan Z; Cao X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2994-3003. PubMed ID: 34802762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance microwave absorption of MOF-derived Co
    Lyu L; Zheng S; Wang F; Liu Y; Liu J
    J Colloid Interface Sci; 2021 Nov; 602():197-206. PubMed ID: 34126501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance.
    Wang L; Zhu S; Zhu J
    J Colloid Interface Sci; 2022 Oct; 624():423-432. PubMed ID: 35667204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.