These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3599939)

  • 1. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device.
    Mann KA; Deutsch S; Tarbell JM; Geselowitz DB; Rosenberg G; Pierce WS
    J Biomech Eng; 1987 May; 109(2):139-47. PubMed ID: 3599939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.
    Hu QH; Li JY; Zhang MY; Zhu XR
    Artif Organs; 2012 Apr; 36(4):429-33. PubMed ID: 21995643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fluid viscoelasticity on the performance of an axial blood pump model.
    Hu QH; Li JY; Zhang MY
    ASAIO J; 2012; 58(1):32-9. PubMed ID: 22210649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition to Turbulence Downstream of a Stenosis for Whole Blood and a Newtonian Analog Under Steady Flow Conditions.
    Costa RP; Simplice Talla Nwotchouang B; Yao J; Biswas D; Casey D; McKenzie R; Steinman DA; Loth F
    J Biomech Eng; 2022 Mar; 144(3):. PubMed ID: 34505131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed ultrasonic Doppler velocity measurements inside a left ventricular assist device.
    Tarbell JM; Gunshinan JP; Geselowitz DB; Rosenberg G; Shung KK; Pierce WS
    J Biomech Eng; 1986 Aug; 108(3):232-8. PubMed ID: 2943938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I.
    Moravec S; Liepsch D
    Biorheology; 1983; 20(6):745-59. PubMed ID: 6661526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot-film wall shear probe measurements inside a ventricular assist device.
    Baldwin JT; Tarbell JM; Deutsch S; Geselowitz DB; Rosenberg G
    J Biomech Eng; 1988 Nov; 110(4):326-33. PubMed ID: 3205017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD).
    Jin W; Clark C
    J Biomech; 1993 Jun; 26(6):697-707. PubMed ID: 8514814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of flow in numerical and physical models of a ventricular assist device using low- and high-viscosity fluids.
    König CS; Clark C; Mokhtarzadeh-Dehghan MR
    Proc Inst Mech Eng H; 1999; 213(5):423-32. PubMed ID: 10581969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean flow velocity patterns within a ventricular assist device.
    Baldwin JT; Tarbell JM; Deutsch S; Geselowitz DB
    ASAIO Trans; 1989; 35(3):429-33. PubMed ID: 2597496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid.
    Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P
    J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle image velocimetry measurements of blood velocity in a continuous flow ventricular assist device.
    Day SW; McDaniel JC; Wood HG; Allaire PE; Landrot N; Curtas A
    ASAIO J; 2001; 47(4):406-11. PubMed ID: 11482495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow].
    Wang X; Stoltz JF
    J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids.
    Pohl M; Wendt MO; Werner S; Koch B; Lerche D
    Artif Organs; 1996 Jan; 20(1):37-46. PubMed ID: 8645128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.