These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35999488)

  • 1. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites.
    Dickerson DA
    Adv Biol (Weinh); 2023 May; 7(5):e2200067. PubMed ID: 35999488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel based approaches for cardiac tissue engineering.
    Saludas L; Pascual-Gil S; Prósper F; Garbayo E; Blanco-Prieto M
    Int J Pharm; 2017 May; 523(2):454-475. PubMed ID: 27989830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of hydrogel-based scaffolds for in vitro three-dimensional human skin model reconstruction.
    Tan SH; Chua DAC; Tang JRJ; Bonnard C; Leavesley D; Liang K
    Acta Biomater; 2022 Nov; 153():13-37. PubMed ID: 36191774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularized myocardial matrix hydrogels: In basic research and preclinical studies.
    Wang RM; Christman KL
    Adv Drug Deliv Rev; 2016 Jan; 96():77-82. PubMed ID: 26056717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials in myocardial tissue engineering.
    Reis LA; Chiu LL; Feric N; Fu L; Radisic M
    J Tissue Eng Regen Med; 2016 Jan; 10(1):11-28. PubMed ID: 25066525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle.
    Ungerleider JL; Johnson TD; Rao N; Christman KL
    Methods; 2015 Aug; 84():53-9. PubMed ID: 25843605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterializing the promise of cardiac tissue engineering.
    Pomeroy JE; Helfer A; Bursac N
    Biotechnol Adv; 2020; 42():107353. PubMed ID: 30794878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 25th anniversary article: Engineering hydrogels for biofabrication.
    Malda J; Visser J; Melchels FP; Jüngst T; Hennink WE; Dhert WJ; Groll J; Hutmacher DW
    Adv Mater; 2013 Sep; 25(36):5011-28. PubMed ID: 24038336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage and bone tissue engineering using hydrogels.
    Vinatier C; Guicheux J; Daculsi G; Layrolle P; Weiss P
    Biomed Mater Eng; 2006; 16(4 Suppl):S107-13. PubMed ID: 16823101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.
    Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD
    Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Hu M; Yang J; Xu J
    Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bringing hydrogel-based craniofacial therapies to the clinic.
    Trubelja A; Kasper FK; Farach-Carson MC; Harrington DA
    Acta Biomater; 2022 Jan; 138():1-20. PubMed ID: 34743044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of hydrogel-based strategies for application in cardiac tissue regeneration.
    Sun X; Nunes SS
    Biomed Mater; 2015 Jun; 10(3):034005. PubMed ID: 26040708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair.
    Lee M; Kim MC; Lee JY
    Int J Nanomedicine; 2022; 17():6181-6200. PubMed ID: 36531116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac tissue engineering for myocardial infarction treatment.
    Gil-Cabrerizo P; Scacchetti I; Garbayo E; Blanco-Prieto MJ
    Eur J Pharm Sci; 2023 Jun; 185():106439. PubMed ID: 37003408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopatterned anisotropic swelling of dual-crosslinked hyaluronic acid hydrogels.
    Zawko SA; Suri S; Truong Q; Schmidt CE
    Acta Biomater; 2009 Jan; 5(1):14-22. PubMed ID: 18929518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.
    Wang B; Patnaik SS; Brazile B; Butler JR; Claude A; Zhang G; Guan J; Hong Y; Liao J
    Crit Rev Biomed Eng; 2015; 43(5-6):455-71. PubMed ID: 27480586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
    Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; Yüksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A
    Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.