These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35999723)
21. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge. Wang H; Yang Z; Li X; Liu Y Environ Sci Pollut Res Int; 2020 May; 27(14):17109-17122. PubMed ID: 32146677 [TBL] [Abstract][Full Text] [Related]
22. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate. Liu L; Huang L; Huang R; Lin H; Wang D J Hazard Mater; 2021 Feb; 403():123648. PubMed ID: 32835990 [TBL] [Abstract][Full Text] [Related]
23. Influence of pyrolysis temperature on the properties and environmental safety of heavy metals in chicken manure-derived biochars. Bai T; Qu W; Yan Y; Ma K; Xu Y; Zhou X; Chen Y; Xu Y J Environ Sci Health B; 2020; 55(11):941-950. PubMed ID: 32715911 [TBL] [Abstract][Full Text] [Related]
24. A review on fabricating functional materials by electroplating sludge: process characteristics and outlook. Cao C; Yu J; Xu X; Li F; Yang Z; Wang G; Zhang S; Cheng Z; Li T; Pu Y; Xian J; Yang Y; Pu Z Environ Sci Pollut Res Int; 2023 May; 30(24):64827-64844. PubMed ID: 37093385 [TBL] [Abstract][Full Text] [Related]
25. Stabilization of heavy metals in solid waste and sludge pyrolysis by intercalation-exfoliation modified vermiculite. Yang Y; Zhong Z; Jin B; Zhang B; Du H; Li Q; Zheng X; Qi R; Ren P J Environ Manage; 2024 Apr; 356():120747. PubMed ID: 38537473 [TBL] [Abstract][Full Text] [Related]
26. Migration and transformation of heavy metals in Chinese medicine residues during the process of traditional pyrolysis and solar pyrolysis. Hou X; Deng Y; Dai M; Jiang X; Li S; Fu H; Peng C Chemosphere; 2022 Apr; 293():133658. PubMed ID: 35051513 [TBL] [Abstract][Full Text] [Related]
27. Immobilization of heavy metals in biochar by co-pyrolysis of sludge and CaSiO Zhang S; Gu W; Geng Z; Bai J; Dong B; Zhao J; Zhuang X; Shih K J Environ Manage; 2023 Jan; 326(Pt B):116635. PubMed ID: 36399807 [TBL] [Abstract][Full Text] [Related]
28. Detoxification of vancomycin fermentation residue by hydrothermal treatment and pyrolysis: Chemical analysis and toxicity tests. Zhang M; Chen Q; Zhang Y; Zhang R; Chen Y; Mu J Waste Manag; 2024 Jun; 183():132-142. PubMed ID: 38744165 [TBL] [Abstract][Full Text] [Related]
29. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Lyu H; Gong Y; Tang J; Huang Y; Wang Q Environ Sci Pollut Res Int; 2016 Jul; 23(14):14472-88. PubMed ID: 27068904 [TBL] [Abstract][Full Text] [Related]
30. [Speciation and Ecological Risk Assessment of Heavy Metal(loid)s in the Municipal Sewage Sludge of China]. Geng YM; Zhang CB; Zhang Y; Huang DD; Yan SX; Sun TF; Cheng L; Wang J; Mao YX Huan Jing Ke Xue; 2021 Oct; 42(10):4834-4843. PubMed ID: 34581126 [TBL] [Abstract][Full Text] [Related]
31. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Wang X; Li C; Li Z; Yu G; Wang Y Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166 [TBL] [Abstract][Full Text] [Related]
32. Effective separation and recovery of Zn, Cu, and Cr from electroplating sludge based on differential phase transformation induced by chlorinating roasting. Huang Q; Wang Q; Liu X; Li X; Zheng J; Gao H; Li L; Xu W; Wang S; Xie M; Xiao Y; Lin Z Sci Total Environ; 2022 May; 820():153260. PubMed ID: 35065102 [TBL] [Abstract][Full Text] [Related]
33. Approaches for electroplating sludge treatment and disposal technology: Reduction, pretreatment and reuse. Wang H; Liu X; Zhang Z J Environ Manage; 2024 Jan; 349():119535. PubMed ID: 37979382 [TBL] [Abstract][Full Text] [Related]
34. Feasibility and risk assessment of heavy metals from low-temperature magnetic pyrolysis of municipal solid waste on a pilot scale. Peng C; Zhou Z; Feng W; Zhang Y; Guo S; Liu X; Zhai Y Chemosphere; 2021 Aug; 277():130362. PubMed ID: 34384191 [TBL] [Abstract][Full Text] [Related]
35. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges. Huang R; Zhang B; Saad EM; Ingall ED; Tang Y Water Res; 2018 Apr; 132():260-269. PubMed ID: 29331913 [TBL] [Abstract][Full Text] [Related]
36. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures. Xing J; Li L; Li G; Xu G Ecotoxicol Environ Saf; 2019 Sep; 180():457-465. PubMed ID: 31121552 [TBL] [Abstract][Full Text] [Related]
37. Co-pyrolysis of sewage sludge/cotton stalks with K Wang Z; Tian Q; Guo J; Wu R; Zhu H; Zhang H Waste Manag; 2021 Nov; 135():199-207. PubMed ID: 34520992 [TBL] [Abstract][Full Text] [Related]
38. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Yuan X; Leng L; Huang H; Chen X; Wang H; Xiao Z; Zhai Y; Chen H; Zeng G Chemosphere; 2015 Feb; 120():645-52. PubMed ID: 25462309 [TBL] [Abstract][Full Text] [Related]
39. Co-pyrolysis of textile dyeing sludge/litchi shell and CaO: Immobilization of heavy metals and the analysis of the mechanism. Li D; Shan R; Gu J; Zhang Y; Zeng X; Lin L; Yuan H; Chen Y Waste Manag; 2023 Sep; 171():382-392. PubMed ID: 37776809 [TBL] [Abstract][Full Text] [Related]