These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36000229)

  • 1. The role of wingbeat frequency and amplitude in flight power.
    Krishnan K; Garde B; Bennison A; Cole NC; Cole EL; Darby J; Elliott KH; Fell A; Gómez-Laich A; de Grissac S; Jessopp M; Lempidakis E; Mizutani Y; Prudor A; Quetting M; Quintana F; Robotka H; Roulin A; Ryan PG; Schalcher K; Schoombie S; Tatayah V; Tremblay F; Weimerskirch H; Whelan S; Wikelski M; Yoda K; Hedenström A; Shepard ELC
    J R Soc Interface; 2022 Aug; 19(193):20220168. PubMed ID: 36000229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous measurements of three-dimensional trajectories and wingbeat frequencies of birds in the field.
    Ling H; Mclvor GE; Nagy G; MohaimenianPour S; Vaughan RT; Thornton A; Ouellette NT
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30355809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight muscle power increases with strain amplitude and decreases with cycle frequency in zebra finches (
    Bahlman JW; Baliga VB; Altshuler DL
    J Exp Biol; 2020 Nov; 223(Pt 21):. PubMed ID: 33046567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flight style of the black-billed magpie: variation in wing kinematics, neuromuscular control, and muscle composition.
    Tobalske BW; Olson NE; Dial KP
    J Exp Zool; 1997 Nov; 279(4):313-29. PubMed ID: 9360313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds.
    Nudds RL; Taylor GK; Thomas AL
    Proc Biol Sci; 2004 Oct; 271(1552):2071-6. PubMed ID: 15451698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel.
    Park KJ; Rosén M; Hedenström A
    J Exp Biol; 2001 Aug; 204(Pt 15):2741-50. PubMed ID: 11533124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulence causes kinematic and behavioural adjustments in a flapping flier.
    Lempidakis E; Ross AN; Quetting M; Krishnan K; Garde B; Wikelski M; Shepard ELC
    J R Soc Interface; 2024 Mar; 21(212):20230591. PubMed ID: 38503340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic and kinematic constraints on avian flight signals.
    Berg KS; Delgado S; Mata-Betancourt A
    Proc Biol Sci; 2019 Sep; 286(1911):20191083. PubMed ID: 31530147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.
    Tobalske B; Dial K
    J Exp Biol; 1996; 199(Pt 2):263-80. PubMed ID: 9317775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birds invest wingbeats to keep a steady head and reap the ultimate benefits of flying together.
    Taylor LA; Taylor GK; Lambert B; Walker JA; Biro D; Portugal SJ
    PLoS Biol; 2019 Jun; 17(6):e3000299. PubMed ID: 31211769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of body size on take-off flight performance in the Phasianidae (Aves).
    Tobalske BW; Dial KP
    J Exp Biol; 2000 Nov; 203(Pt 21):3319-32. PubMed ID: 11023852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular control of hovering wingbeat kinematics in response to distinct flight challenges in the ruby-throated hummingbird, Archilochus colubris.
    Mahalingam S; Welch KC
    J Exp Biol; 2013 Nov; 216(Pt 22):4161-71. PubMed ID: 23948477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular control of wingbeat kinematics in Anna's hummingbirds (Calypte anna).
    Altshuler DL; Welch KC; Cho BH; Welch DB; Lin AF; Dickson WB; Dickinson MH
    J Exp Biol; 2010 Jul; 213(Pt 14):2507-14. PubMed ID: 20581280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks.
    Pennycuick CJ
    J Exp Biol; 2001 Oct; 204(Pt 19):3283-94. PubMed ID: 11606602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling bat wingbeat frequency and amplitude.
    Bullen RD; McKenzie NL
    J Exp Biol; 2002 Sep; 205(Pt 17):2615-26. PubMed ID: 12151367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size.
    Norberg UM; Norberg RÅ
    J Exp Biol; 2012 Mar; 215(Pt 5):711-22. PubMed ID: 22323193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.