These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36000233)

  • 1. Warming in the land of the midnight sun: breeding birds may suffer greater heat stress at high- versus low-Arctic sites.
    O'Connor RS; Le Pogam A; Young KG; Love OP; Cox CJ; Roy G; Robitaille F; Elliott KH; Hargreaves AL; Choy ES; Gilchrist HG; Berteaux D; Tam A; Vézina F
    Proc Biol Sci; 2022 Aug; 289(1981):20220300. PubMed ID: 36000233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited heat tolerance in an Arctic passerine: Thermoregulatory implications for cold-specialized birds in a rapidly warming world.
    O'Connor RS; Le Pogam A; Young KG; Robitaille F; Choy ES; Love OP; Elliott KH; Hargreaves AL; Berteaux D; Tam A; Vézina F
    Ecol Evol; 2021 Feb; 11(4):1609-1619. PubMed ID: 33613993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding on the extreme edge: modulation of the adrenocortical response to acute stress in two High Arctic passerines.
    Walker BG; Meddle SL; Romero LM; Landys MM; Reneerkens J; Wingfield JC
    J Exp Zool A Ecol Genet Physiol; 2015 Apr; 323(4):266-75. PubMed ID: 25757443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An anti-narcolepsy drug reveals behavioral and fitness costs of extreme activity cycles in arctic-breeding songbirds.
    Payette WI; Hodinka BL; Pullum KB; Richter MM; Ashley NT
    J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 33692076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: Implications for resilience to climate warming.
    Hupp JW; Ward DH; Soto DX; Hobson KA
    Glob Chang Biol; 2018 Nov; 24(11):5056-5071. PubMed ID: 30092605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evidence that hyperthermia limits offspring provisioning in a temperate-breeding bird.
    Tapper S; Nocera JJ; Burness G
    R Soc Open Sci; 2020 Oct; 7(10):201589. PubMed ID: 33204485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormones and territorial behavior during breeding in snow buntings (Plectrophenax nivalis): an Arctic-breeding songbird.
    Romero LM; Soma KK; O'Reilly KM; Suydam R; Wingfield JC
    Horm Behav; 1998 Feb; 33(1):40-7. PubMed ID: 9571012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited heat tolerance in a cold-adapted seabird: implications of a warming Arctic.
    Choy ES; O'Connor RS; Gilchrist HG; Hargreaves AL; Love OP; Vézina F; Elliott KH
    J Exp Biol; 2021 Jul; 224(13):. PubMed ID: 34232314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification at high latitudes: speciation of buntings in the genus Plectrophenax inferred from mitochondrial and nuclear markers.
    Maley JM; Winker K
    Mol Ecol; 2010 Feb; 19(4):785-97. PubMed ID: 20088885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wintering Snow Buntings Elevate Cold Hardiness to Extreme Levels but Show No Changes in Maintenance Costs.
    Le Pogam A; Love OP; Régimbald L; Dubois K; Hallot F; Milbergue M; Petit M; O'Connor RS; Vézina F
    Physiol Biochem Zool; 2020; 93(6):417-433. PubMed ID: 33048603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds.
    Boelman NT; Krause JS; Sweet SK; Chmura HE; Perez JH; Gough L; Wingfield JC
    Oecologia; 2017 Sep; 185(1):69-80. PubMed ID: 28779226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine.
    Sharpe LL; Bayter C; Gardner JL
    J Therm Biol; 2021 May; 98():102921. PubMed ID: 34016345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the heat dissipation limit theory in a breeding passerine.
    Nilsson JÅ; Nord A
    Proc Biol Sci; 2018 May; 285(1878):. PubMed ID: 29769365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life-history attributes of Arctic-breeding birds drive uneven responses to environmental variability across different phases of the reproductive cycle.
    Ruthrauff DR; Patil VP; Hupp JW; Ward DH
    Ecol Evol; 2021 Dec; 11(24):18514-18530. PubMed ID: 35003689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
    Descamps S; Aars J; Fuglei E; Kovacs KM; Lydersen C; Pavlova O; Pedersen ÅØ; Ravolainen V; Strøm H
    Glob Chang Biol; 2017 Feb; 23(2):490-502. PubMed ID: 27250039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience.
    Martin K; Wiebe KL
    Integr Comp Biol; 2004 Apr; 44(2):177-85. PubMed ID: 21680497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acclimation potential of Arctic cod (Boreogadus saida) from the rapidly warming Arctic Ocean.
    Drost HE; Lo M; Carmack EC; Farrell AP
    J Exp Biol; 2016 Oct; 219(Pt 19):3114-3125. PubMed ID: 27471275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic.
    Lameris TK; de Jong ME; Boom MP; van der Jeugd HP; Litvin KE; Loonen MJJE; Nolet BA; Prop J
    Oecologia; 2019 Dec; 191(4):1003-1014. PubMed ID: 31624958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat dissipation capacity influences reproductive performance in an aerial insectivore.
    Tapper S; Nocera JJ; Burness G
    J Exp Biol; 2020 May; 223(Pt 10):. PubMed ID: 32321750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.