These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 36000247)

  • 1. Baseline correction using a deep-learning model combining ResNet and UNet.
    Chen T; Son Y; Park A; Baek SJ
    Analyst; 2022 Sep; 147(19):4285-4292. PubMed ID: 36000247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning based oxygen and carbon concentration derivation using dual-energy CT for PET-based dose verification in proton therapy.
    Liu Y; Zhou L; Peng H
    Med Phys; 2022 May; 49(5):3347-3360. PubMed ID: 35246842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning model designed for Raman spectroscopy with a novel hyperparameter optimization method.
    Sui A; Deng Y; Wang Y; Yu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121560. PubMed ID: 35772199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Automated Baseline Correction Method Based on Iterative Morphological Operations.
    Chen Y; Dai L
    Appl Spectrosc; 2018 May; 72(5):731-739. PubMed ID: 29254366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISREA: An Efficient Peak-Preserving Baseline Correction Algorithm for Raman Spectra.
    Xu Y; Du P; Senger R; Robertson J; Pirkle JL
    Appl Spectrosc; 2021 Jan; 75(1):34-45. PubMed ID: 33030999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse spectral band-based deep residual network for tongue squamous cell carcinoma classification using fiber optic Raman spectroscopy.
    Ding J; Yu M; Zhu L; Zhang T; Xia J; Sun G
    Photodiagnosis Photodyn Ther; 2020 Dec; 32():102048. PubMed ID: 33017657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Constrained Reweighted Penalized Least Squares for Spectral Baseline Correction.
    Yang G; Dai J; Liu X; Chen M; Wu X
    Appl Spectrosc; 2020 Dec; 74(12):1443-1451. PubMed ID: 31617386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Universal and Accurate Method for Easily Identifying Components in Raman Spectroscopy Based on Deep Learning.
    Fan X; Wang Y; Yu C; Lv Y; Zhang H; Yang Q; Wen M; Lu H; Zhang Z
    Anal Chem; 2023 Mar; 95(11):4863-4870. PubMed ID: 36908216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Raman-spectrum baseline correction in biological application.
    Guo S; Bocklitz T; Popp J
    Analyst; 2016 Apr; 141(8):2396-404. PubMed ID: 26907832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet.
    Wu K; Luo J; Zeng Q; Dong X; Chen J; Zhan C; Chen Z; Lin Y
    Anal Chem; 2021 Jan; 93(3):1377-1382. PubMed ID: 33377773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser tweezers Raman spectroscopy combined with deep learning to classify marine bacteria.
    Liu B; Liu K; Wang N; Ta K; Liang P; Yin H; Li B
    Talanta; 2022 Jul; 244():123383. PubMed ID: 35349842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Adaptive and Fully Automated Baseline Correction Method for Raman Spectroscopy Based on Morphological Operations and Mollification.
    Chen H; Xu W; Broderick NGR
    Appl Spectrosc; 2019 Mar; 73(3):284-293. PubMed ID: 30334459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and accurate identification of pathogenic bacteria at the single-cell level using laser tweezers Raman spectroscopy and deep learning.
    Zhou B; Sun L; Fang T; Li H; Zhang R; Ye A
    J Biophotonics; 2022 Jul; 15(7):e202100312. PubMed ID: 35150463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Effective Baseline Correction Algorithm Using Broad Gaussian Vectors for Chemical Agent Detection with Known Raman Signature Spectra.
    Yu HG; Park DJ; Chang DE; Nam H
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).
    Guo S; Chernavskaia O; Popp J; Bocklitz T
    Talanta; 2018 Aug; 186():372-380. PubMed ID: 29784376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Baseline correction using asymmetrically reweighted penalized least squares smoothing.
    Baek SJ; Park A; Ahn YJ; Choo J
    Analyst; 2015 Jan; 140(1):250-7. PubMed ID: 25382860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum.
    Ye J; Tian Z; Wei H; Li Y
    Appl Opt; 2020 Dec; 59(34):10933-10943. PubMed ID: 33361915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention-VGG16-UNet: a novel deep learning approach for automatic segmentation of the median nerve in ultrasound images.
    Huang A; Jiang L; Zhang J; Wang Q
    Quant Imaging Med Surg; 2022 Jun; 12(6):3138-3150. PubMed ID: 35655843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemometric correction of drift effects in optical spectra.
    Vogt F; Steiner H; Booksh K; Mizaikoff B
    Appl Spectrosc; 2004 Jun; 58(6):683-92. PubMed ID: 15198820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.