These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36000351)
1. Tumor Microenvironment, Radiology, and Artificial Intelligence: Should We Consider Tumor Periphery? Mohammadi A; Mirza-Aghazadeh-Attari M; Faeghi F; Homayoun H; Abolghasemi J; Vogl TJ; Bureau NJ; Bakhshandeh M; Acharya RU; Abbasian Ardakani A J Ultrasound Med; 2022 Dec; 41(12):3079-3090. PubMed ID: 36000351 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338 [TBL] [Abstract][Full Text] [Related]
4. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
5. Prediction of malignancy upgrade rate in high-risk breast lesions using an artificial intelligence model: a retrospective study. Aslan Ö; Oktay A; Katuk B; Erdur RC; Dikenelli O; Yeniay L; Zekioğlu O; Özbek SS Diagn Interv Radiol; 2023 Mar; 29(2):260-267. PubMed ID: 36987868 [TBL] [Abstract][Full Text] [Related]
6. Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: A systematic review and meta-analysis. Bedrikovetski S; Dudi-Venkata NN; Maicas G; Kroon HM; Seow W; Carneiro G; Moore JW; Sammour T Artif Intell Med; 2021 Mar; 113():102022. PubMed ID: 33685585 [TBL] [Abstract][Full Text] [Related]
7. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI. Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606 [TBL] [Abstract][Full Text] [Related]
8. FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study. Eifer M; Pinian H; Klang E; Alhoubani Y; Kanana N; Tau N; Davidson T; Konen E; Catalano OA; Eshet Y; Domachevsky L Eur Radiol; 2022 Sep; 32(9):5921-5929. PubMed ID: 35385985 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided diagnosis of cervical lymph nodes on ultrasonography. Zhang J; Wang Y; Dong Y; Wang Y Comput Biol Med; 2008 Feb; 38(2):234-43. PubMed ID: 18022610 [TBL] [Abstract][Full Text] [Related]
10. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
11. Radiomics and Artificial Intelligence in Renal Lesion Assessment. Cellina M; Irmici G; Pepa GD; Ce M; Chiarpenello V; Alì M; Papa S; Carrafiello G Crit Rev Oncog; 2024; 29(2):65-75. PubMed ID: 38505882 [TBL] [Abstract][Full Text] [Related]
12. Inferring FDG-PET-positivity of lymph node metastases in proven lung cancer from contrast-enhanced CT using radiomics and machine learning. Gorodetski B; Becker PH; Baur ADJ; Hartenstein A; Rogasch JMM; Furth C; Amthauer H; Hamm B; Makowski M; Penzkofer T Eur Radiol Exp; 2022 Sep; 6(1):44. PubMed ID: 36104467 [TBL] [Abstract][Full Text] [Related]
13. Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning. Lee HJ; Nguyen AT; Ki SY; Lee JE; Do LN; Park MH; Lee JS; Kim HJ; Park I; Lim HS Front Oncol; 2021; 11():744460. PubMed ID: 34926256 [TBL] [Abstract][Full Text] [Related]
14. Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers. Lo Gullo R; Daimiel I; Rossi Saccarelli C; Bitencourt A; Gibbs P; Fox MJ; Thakur SB; Martinez DF; Jochelson MS; Morris EA; Pinker K Eur Radiol; 2020 Dec; 30(12):6721-6731. PubMed ID: 32594207 [TBL] [Abstract][Full Text] [Related]
15. Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR. Sun K; Jiao Z; Zhu H; Chai W; Yan X; Fu C; Cheng JZ; Yan F; Shen D J Transl Med; 2021 Oct; 19(1):443. PubMed ID: 34689804 [TBL] [Abstract][Full Text] [Related]
16. Radiomics Based on Multimodal MRI for the Differential Diagnosis of Benign and Malignant Breast Lesions. Zhang Q; Peng Y; Liu W; Bai J; Zheng J; Yang X; Zhou L J Magn Reson Imaging; 2020 Aug; 52(2):596-607. PubMed ID: 32061014 [TBL] [Abstract][Full Text] [Related]
17. An Optimized Radiomics Model Based on Automated Breast Volume Scan Images to Identify Breast Lesions: Comparison of Machine Learning Methods: Comparison of Machine Learning Methods. Wang H; Yang X; Ma S; Zhu K; Guo S J Ultrasound Med; 2022 Jul; 41(7):1643-1655. PubMed ID: 34609750 [TBL] [Abstract][Full Text] [Related]
18. Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution. Ji Y; Li H; Edwards AV; Papaioannou J; Ma W; Liu P; Giger ML Cancer Imaging; 2019 Sep; 19(1):64. PubMed ID: 31533838 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Lymph Node Metastasis in Patients With Papillary Thyroid Carcinoma: A Radiomics Method Based on Preoperative Ultrasound Images. Liu T; Zhou S; Yu J; Guo Y; Wang Y; Zhou J; Chang C Technol Cancer Res Treat; 2019 Jan; 18():1533033819831713. PubMed ID: 30890092 [TBL] [Abstract][Full Text] [Related]
20. Radiomics based on magnetic resonance imaging for preoperative prediction of lymph node metastasis in head and neck cancer: Machine learning study. Wang Y; Yu T; Yang Z; Zhou Y; Kang Z; Wang Y; Huang Z Head Neck; 2022 Dec; 44(12):2786-2795. PubMed ID: 36114765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]