These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 36000572)
41. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model. Zhang B; Zhang Y; Shacter E; Zheng Y Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769 [TBL] [Abstract][Full Text] [Related]
42. Structure of the GDP-Pi complex of Gly203-->Ala gialpha1: a mimic of the ternary product complex of galpha-catalyzed GTP hydrolysis. Berghuis AM; Lee E; Raw AS; Gilman AG; Sprang SR Structure; 1996 Nov; 4(11):1277-90. PubMed ID: 8939752 [TBL] [Abstract][Full Text] [Related]
43. Competition for Gβγ dimers mediates a specific cross-talk between stimulatory and inhibitory G protein α subunits of the adenylyl cyclase in cardiomyocytes. Hippe HJ; Lüdde M; Schnoes K; Novakovic A; Lutz S; Katus HA; Niroomand F; Nürnberg B; Frey N; Wieland T Naunyn Schmiedebergs Arch Pharmacol; 2013 Jun; 386(6):459-69. PubMed ID: 23615874 [TBL] [Abstract][Full Text] [Related]
44. Helix dipole movement and conformational variability contribute to allosteric GDP release in Galphai subunits. Preininger AM; Funk MA; Oldham WM; Meier SM; Johnston CA; Adhikary S; Kimple AJ; Siderovski DP; Hamm HE; Iverson TM Biochemistry; 2009 Mar; 48(12):2630-42. PubMed ID: 19222191 [TBL] [Abstract][Full Text] [Related]
45. Nucleotide binding switches the information flow in ras GTPases. Raimondi F; Portella G; Orozco M; Fanelli F PLoS Comput Biol; 2011 Mar; 7(3):e1001098. PubMed ID: 21390270 [TBL] [Abstract][Full Text] [Related]
46. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42. Kintscher C; Groemping Y J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586 [TBL] [Abstract][Full Text] [Related]
47. Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal integration. Cismowski MJ; Ma C; Ribas C; Xie X; Spruyt M; Lizano JS; Lanier SM; Duzic E J Biol Chem; 2000 Aug; 275(31):23421-4. PubMed ID: 10840027 [TBL] [Abstract][Full Text] [Related]
48. Perturbing the linker regions of the alpha-subunit of transducin: a new class of constitutively active GTP-binding proteins. Majumdar S; Ramachandran S; Cerione RA J Biol Chem; 2004 Sep; 279(38):40137-45. PubMed ID: 15271992 [TBL] [Abstract][Full Text] [Related]
49. Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model. Kim MH; Kim YJ; Kim HR; Jeon TJ; Choi JB; Chung KY; Kim MK PLoS One; 2016; 11(8):e0159528. PubMed ID: 27483005 [TBL] [Abstract][Full Text] [Related]
50. Interactions between the amino- and carboxyl-terminal regions of G alpha subunits: analysis of mutated G alpha o/G alpha i2 chimeras. Denker BM; Boutin PM; Neer EJ Biochemistry; 1995 Apr; 34(16):5544-53. PubMed ID: 7727415 [TBL] [Abstract][Full Text] [Related]
51. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins. Majumdar S; Ramachandran S; Cerione RA J Biol Chem; 2006 Apr; 281(14):9219-26. PubMed ID: 16469737 [TBL] [Abstract][Full Text] [Related]
52. Evidence for a second, high affinity Gbetagamma binding site on Galphai1(GDP) subunits. Wang J; Sengupta P; Guo Y; Golebiewska U; Scarlata S J Biol Chem; 2009 Jun; 284(25):16906-16913. PubMed ID: 19369247 [TBL] [Abstract][Full Text] [Related]
53. Sequestration of G-protein beta gamma subunits by different G-protein alpha subunits blocks voltage-dependent modulation of Ca2+ channels in rat sympathetic neurons. Jeong SW; Ikeda SR J Neurosci; 1999 Jun; 19(12):4755-61. PubMed ID: 10366609 [TBL] [Abstract][Full Text] [Related]
55. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Oldham WM; Van Eps N; Preininger AM; Hubbell WL; Hamm HE Proc Natl Acad Sci U S A; 2007 May; 104(19):7927-32. PubMed ID: 17463080 [TBL] [Abstract][Full Text] [Related]
56. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. Kapoor N; Menon ST; Chauhan R; Sachdev P; Sakmar TP J Mol Biol; 2009 Nov; 393(4):882-97. PubMed ID: 19703466 [TBL] [Abstract][Full Text] [Related]
57. Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Wang H; Ng KH; Qian H; Siderovski DP; Chia W; Yu F Nat Cell Biol; 2005 Nov; 7(11):1091-8. PubMed ID: 16228012 [TBL] [Abstract][Full Text] [Related]
58. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex. Ramachandran S; Cerione RA J Biol Chem; 2011 Apr; 286(14):12702-11. PubMed ID: 21285355 [TBL] [Abstract][Full Text] [Related]
59. Effects of partial agonists and Mg2+ ions on the interaction of M2 muscarinic acetylcholine receptor and G protein Galpha i1 subunit in the M2-Galpha i1 fusion protein. Zhang Q; Okamura M; Guo ZD; Niwa S; Haga T J Biochem; 2004 May; 135(5):589-96. PubMed ID: 15173197 [TBL] [Abstract][Full Text] [Related]
60. Assembly and function of the regulator of G protein signaling 14 (RGS14)·H-Ras signaling complex in live cells are regulated by Gαi1 and Gαi-linked G protein-coupled receptors. Vellano CP; Brown NE; Blumer JB; Hepler JR J Biol Chem; 2013 Feb; 288(5):3620-31. PubMed ID: 23250758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]