BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36000991)

  • 1. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes.
    Gates C; Varnum H; Getty C; Loui N; Chen J; Kirk ML; Yang J; Nieter Burgmayer SJ
    Inorg Chem; 2022 Sep; 61(35):13728-13742. PubMed ID: 36000991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of molybdenum(4+) quinoxalyldithiolenes as models for the noninnocent pyranopterin in the molybdenum cofactor.
    Matz KG; Mtei RP; Rothstein R; Kirk ML; Burgmayer SJ
    Inorg Chem; 2011 Oct; 50(20):9804-15. PubMed ID: 21894968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor.
    Gisewhite DR; Yang J; Williams BR; Esmail A; Stein B; Kirk ML; Burgmayer SJN
    J Am Chem Soc; 2018 Oct; 140(40):12808-12818. PubMed ID: 30200760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninnocent dithiolene ligands: a new oxomolybdenum complex possessing a donor-acceptor dithiolene ligand.
    Matz KG; Mtei RP; Leung B; Burgmayer SJ; Kirk ML
    J Am Chem Soc; 2010 Jun; 132(23):7830-1. PubMed ID: 20481628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Pyran Formation in the Molybdenum Cofactor: Protonation of Quinoxalyl-Dithiolene Promoting Pyran Cyclization.
    Gisewhite DR; Nagelski AL; Cummins DC; Yap GPA; Burgmayer SJN
    Inorg Chem; 2019 Apr; 58(8):5134-5144. PubMed ID: 30942584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media.
    Sugimoto H; Tano H; Miyake H; Itoh S
    Dalton Trans; 2011 Mar; 40(10):2358-65. PubMed ID: 21246143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chalcogenidobis(ene-1,2-dithiolate)molybdenum(IV) complexes (chalcogenide E = O, S, Se): probing Mo≡E and ene-1,2-dithiolate substituent effects on geometric and electronic structure.
    Sugimoto H; Tano H; Suyama K; Kobayashi T; Miyake H; Itoh S; Mtei RP; Kirk ML
    Dalton Trans; 2011 Feb; 40(5):1119-31. PubMed ID: 21165484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoanionic molybdenum and tungsten tris(dithiolene) complexes: a multifrequency EPR study.
    Sproules S; Banerjee P; Weyhermüller T; Yan Y; Donahue JP; Wieghardt K
    Inorg Chem; 2011 Aug; 50(15):7106-22. PubMed ID: 21699192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-Dependent Pyranopterin Cyclization in Molybdenum Cofactor Model Complexes.
    Williams BR; Gisewhite D; Kalinsky A; Esmail A; Burgmayer SJ
    Inorg Chem; 2015 Sep; 54(17):8214-22. PubMed ID: 25942001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxido-Alcoholato and Oxido-Thiolato Molybdenum(VI) Core Structures.
    Sugimoto H; Sato M; Asano K; Suzuki T; Mieda K; Ogura T; Matsumoto T; Giles LJ; Pokhrel A; Kirk ML; Itoh S
    Inorg Chem; 2016 Feb; 55(4):1542-50. PubMed ID: 26816115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
    Williams BR; Fu Y; Yap GP; Burgmayer SJ
    J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity.
    Yang J; Enemark JH; Kirk ML
    Inorganics (Basel); 2020 Mar; 8(3):. PubMed ID: 34327225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodithiolene molybdenum(V, VI) complexes: a structural analogue of the oxidized active site of the sulfite oxidase enzyme family.
    Lim BS; Willer MW; Miao M; Holm RH
    J Am Chem Soc; 2001 Aug; 123(34):8343-9. PubMed ID: 11516283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. {Moco}
    Enemark JH
    J Inorg Biochem; 2022 Jun; 231():111801. PubMed ID: 35339771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-Quench Magnetic Circular Dichroism Spectroscopic Study of the "Very Rapid" Intermediate in Xanthine Oxidase.
    Jones RM; Inscore FE; Hille R; Kirk ML
    Inorg Chem; 1999 Nov; 38(22):4963-4970. PubMed ID: 11671238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase.
    McNaughton RL; Tipton AA; Rubie ND; Conry RR; Kirk ML
    Inorg Chem; 2000 Dec; 39(25):5697-706. PubMed ID: 11151370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analogues for the molybdenum center of sulfite oxidase: oxomolybdenum(V) complexes with three thiolate sulfur donor atoms.
    Mader ML; Carducci MD; Enemark JH
    Inorg Chem; 2000 Feb; 39(3):525-31. PubMed ID: 11229572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis.
    Burgmayer SJN; Kirk ML
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses, spectroscopy, and redox chemistry of encapsulated oxo-Mo(V) centers: implications for pyranopterin-containing molybdoenzymes.
    Basu P; Nemykin VN; Sengar RS
    Inorg Chem; 2003 Nov; 42(23):7489-501. PubMed ID: 14606844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.