BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36001007)

  • 1. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underwater Bionic Self-Healing Superhydrophobic Coating with the Synergetic Effect Of Hydrogen Bonds and Self-Formed Bubbles.
    Li H; Xin L; Gao J; Shao Y; Zhang Z; Ren L
    Small; 2024 May; 20(20):e2309012. PubMed ID: 38178643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium.
    Yao C; Zhang J; Xue Z; Yu K; Yu X; Yang X; Qu Q; Gan W; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4796-4803. PubMed ID: 33448779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
    Cheng M; Zhang S; Dong H; Han S; Wei H; Shi F
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4275-82. PubMed ID: 25644454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.
    Wang G; Zeng Z; Wang H; Zhang L; Sun X; He Y; Li L; Wu X; Ren T; Xue Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26184-94. PubMed ID: 26562211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective Underwater Drag Reduction: A Butterfly Wing Scale-Inspired Superhydrophobic Surface.
    Chen Y; Hu Y; Zhang LW
    ACS Appl Mater Interfaces; 2024 May; 16(20):26954-26964. PubMed ID: 38713183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer.
    Zhang Y; Zhang Z; Yang J; Yue Y; Zhang H
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice?
    Zhu Y; Yang F; Guo Z
    Nanoscale; 2021 Feb; 13(6):3463-3482. PubMed ID: 33566874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.
    Bhushan B
    Beilstein J Nanotechnol; 2011; 2():66-84. PubMed ID: 21977417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Superhydrophobic Materials Development for Maritime Applications.
    Tang ZQ; Tian T; Molino PJ; Skvortsov A; Ruan D; Ding J; Li Y
    Adv Sci (Weinh); 2024 Apr; 11(16):e2308152. PubMed ID: 38403472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Multilayered Feathers Enhance Underwater Superhydrophobicity.
    Ahmadi SF; Umashankar V; Dean Z; Chang B; Jung S; Boreyko JB
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27567-27574. PubMed ID: 34075745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.
    Hemeda AA; Tafreshi HV
    Langmuir; 2016 Mar; 32(12):2955-62. PubMed ID: 26977775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings.
    Wang Z; Liu X; Ji J; Tao T; Zhang T; Xu J; Jiao Y; Liu K
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48270-48280. PubMed ID: 34592810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching.
    Tuo Y; Zhang H; Rong W; Jiang S; Chen W; Liu X
    Langmuir; 2019 Aug; 35(34):11016-11022. PubMed ID: 31364849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips.
    Cao Y; Liu X; Zhang L; Wu Y; You C; Li H; Duan H; Huang J; Lv P
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16973-16982. PubMed ID: 38502909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
    Koch K; Barthlott W
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1487-509. PubMed ID: 19324720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.