These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36001092)

  • 1. Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe-N-C Materials.
    Hutchison P; Rice PS; Warburton RE; Raugei S; Hammes-Schiffer S
    J Am Chem Soc; 2022 Sep; 144(36):16524-16534. PubMed ID: 36001092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The secondary coordination sphere and axial ligand effects on oxygen reduction reaction by iron porphyrins: a DFT computational study.
    Ohta T; Nagaraju P; Liu JG; Ogura T; Naruta Y
    J Biol Inorg Chem; 2016 Sep; 21(5-6):745-55. PubMed ID: 27501847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Catalytic O
    Pegis ML; Martin DJ; Wise CF; Brezny AC; Johnson SI; Johnson LE; Kumar N; Raugei S; Mayer JM
    J Am Chem Soc; 2019 May; 141(20):8315-8326. PubMed ID: 31042028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic models for the cysteinate-ligated non-heme iron enzyme superoxide reductase: observation and structural characterization by XAS of an Fe(III)-OOH intermediate.
    Shearer J; Scarrow RC; Kovacs JA
    J Am Chem Soc; 2002 Oct; 124(39):11709-17. PubMed ID: 12296737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology.
    Tovmasyan A; Weitner T; Sheng H; Lu M; Rajic Z; Warner DS; Spasojevic I; Reboucas JS; Benov L; Batinic-Haberle I
    Inorg Chem; 2013 May; 52(10):5677-91. PubMed ID: 23646875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DFT Study on the Activity Origin of Fe-N-C Sites for Oxygen Reduction Reaction.
    Zhang S; Qin Y; Ding S; Su Y
    Chemphyschem; 2022 Aug; 23(15):e202200165. PubMed ID: 35513342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry.
    Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L
    Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Which is the real oxidant in competitive ligand self-hydroxylation and substrate oxidation-a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one?
    Cao X; Song H; Li XX; Qiao QA; Zhao Y; Wang Y
    Dalton Trans; 2022 May; 51(19):7571-7580. PubMed ID: 35506913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of iron(II) and iron(III) complexes with fac-N2O, cis-N2O2 and N2O3 donor ligands: models for the 2-His 1-carboxylate motif of non-heme iron monooxygenases.
    Cappillino PJ; Miecznikowski JR; Tyler LA; Tarves PC; McNally JS; Lo W; Kasibhatla BS; Krzyaniak MD; McCracken J; Wang F; Armstrong WH; Caradonna JP
    Dalton Trans; 2012 May; 41(18):5662-77. PubMed ID: 22434362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity.
    Jia Q; Ramaswamy N; Hafiz H; Tylus U; Strickland K; Wu G; Barbiellini B; Bansil A; Holby EF; Zelenay P; Mukerjee S
    ACS Nano; 2015 Dec; 9(12):12496-505. PubMed ID: 26566192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion dependent redox changes in iron bis-terdentate nitroxide {NNO} chelates.
    Gass IA; Gartshore CJ; Lupton DW; Moubaraki B; Nafady A; Bond AM; Boas JF; Cashion JD; Milsmann C; Wieghardt K; Murray KS
    Inorg Chem; 2011 Apr; 50(7):3052-64. PubMed ID: 21384832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes.
    Franke A; Fertinger C; van Eldik R
    Chemistry; 2012 May; 18(22):6935-49. PubMed ID: 22532376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation.
    Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R
    Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center.
    Cao Z; Hall MB
    J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A synthetic analogue of the active site of Fe-containing nitrile hydratase with carboxamido N and thiolato S as donors: synthesis, structure, and reactivities.
    Noveron JC; Olmstead MM; Mascharak PK
    J Am Chem Soc; 2001 Apr; 123(14):3247-59. PubMed ID: 11457060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.