These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 36001134)

  • 1. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER
    Khan AH; Zhou SP; Moe M; Ortega Quesada BA; Bajgiran KR; Lassiter HR; Dorman JA; Martin EC; Pojman JA; Melvin AT
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3977-3985. PubMed ID: 36001134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidically-generated Encapsulated Spheroids (μ-GELS): An All-Aqueous Droplet Microfluidics Platform for Multicellular Spheroids Generation.
    Kieda J; Appak-Baskoy S; Jeyhani M; Navi M; Chan KWY; Tsai SSH
    ACS Biomater Sci Eng; 2023 Feb; 9(2):1043-1052. PubMed ID: 36626575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review.
    Kim S; Lam PY; Jayaraman A; Han A
    Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform.
    Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T
    Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of thiol-acrylate hydrogels using a base-catalyzed Michael addition for 3D cell culture applications.
    Khan AH; Cook JK; Wortmann WJ; Kersker ND; Rao A; Pojman JA; Melvin AT
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2294-2307. PubMed ID: 31961056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array.
    Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation.
    van Loo B; Schot M; Gurian M; Kamperman T; Leijten J
    Adv Healthc Mater; 2024 Jan; 13(2):e2300095. PubMed ID: 37793116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells.
    Dornhof J; Zieger V; Kieninger J; Frejek D; Zengerle R; Urban GA; Kartmann S; Weltin A
    Lab Chip; 2022 Nov; 22(22):4369-4381. PubMed ID: 36254669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
    Bruns J; Egan T; Mercier P; Zustiak SP
    Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system.
    Kwak B; Lee Y; Lee J; Lee S; Lim J
    J Control Release; 2018 Apr; 275():201-207. PubMed ID: 29474963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of PNIPAm-based thermoresponsive hydrogel microwell arrays for tumor spheroid formation.
    Dhamecha D; Le D; Chakravarty T; Perera K; Dutta A; Menon JU
    Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112100. PubMed ID: 33965110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance.
    Hong S; Song JM
    Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies.
    Prince E; Kheiri S; Wang Y; Xu F; Cruickshank J; Topolskaia V; Tao H; Young EWK; McGuigan AP; Cescon DW; Kumacheva E
    Adv Healthc Mater; 2022 Jan; 11(1):e2101085. PubMed ID: 34636180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
    Hill L; Bruns J; Zustiak SP
    Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval.
    Kim G; Jung Y; Cho K; Lee HJ; Koh WG
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Fabrication of Core-Shell Microcapsules carrying Human Pluripotent Stem Cell Spheroids.
    Gwon K; Hong HJ; Gonzalez-Suarez AM; Stybayeva G; Revzin A
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.