These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36001301)

  • 1. Development of Paper Microfluidics with 3D-Printed PDMS Barriers for Flow Control.
    Chen C; Meng H; Guo T; Deshpande S; Chen H
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40286-40296. PubMed ID: 36001301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic flow delay through passive wax valves for paper-based analytical devices.
    Meng H; Chen C; Zhu Y; Li Z; Ye F; Ho JWK; Chen H
    Lab Chip; 2021 Oct; 21(21):4166-4176. PubMed ID: 34541589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Approach to Resin Formulation for 3D Printed Microfluidics.
    Gong H; Beauchamp M; Perry S; Woolley AT; Nordin GP
    RSC Adv; 2015 Dec; 5(129):106621-106632. PubMed ID: 26744624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer.
    Bao N; Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2005 Sep; 1089(1-2):270-5. PubMed ID: 16130797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Viscosity Polydimethylsiloxane Resin for Facile 3D Printing of Elastomeric Microfluidics.
    Fleck E; Keck C; Ryszka K; DeNatale E; Potkay J
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper.
    Bruzewicz DA; Reches M; Whitesides GM
    Anal Chem; 2008 May; 80(9):3387-92. PubMed ID: 18333627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties.
    Ozbolat V; Dey M; Ayan B; Povilianskas A; Demirel MC; Ozbolat IT
    ACS Biomater Sci Eng; 2018 Feb; 4(2):682-693. PubMed ID: 33418756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid assembly of multilayer microfluidic structures via 3D-printed transfer molding and bonding.
    Glick CC; Srimongkol MT; Schwartz AJ; Zhuang WS; Lin JC; Warren RH; Tekell DR; Satamalee PA; Lin L
    Microsyst Nanoeng; 2016; 2():16063. PubMed ID: 31057842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.