These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 36001344)
1. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model. Rahimi AM; Jamali S; Bardhan JP; Lustig SR J Chem Theory Comput; 2022 Sep; 18(9):5539-5558. PubMed ID: 36001344 [TBL] [Abstract][Full Text] [Related]
3. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model. Aleksandrov A; Lin FY; Roux B; MacKerell AD J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546 [TBL] [Abstract][Full Text] [Related]
4. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent. Molavi Tabrizi A; Goossens S; Mehdizadeh Rahimi A; Cooper CD; Knepley MG; Bardhan JP J Chem Theory Comput; 2017 Jun; 13(6):2897-2914. PubMed ID: 28379697 [TBL] [Abstract][Full Text] [Related]
5. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models. Wagoner J; Baker NA J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256 [TBL] [Abstract][Full Text] [Related]
6. SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657 [TBL] [Abstract][Full Text] [Related]
7. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
8. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
9. Field-SEA: a model for computing the solvation free energies of nonpolar, polar, and charged solutes in water. Li L; Fennell CJ; Dill KA J Phys Chem B; 2014 Jun; 118(24):6431-7. PubMed ID: 24299013 [TBL] [Abstract][Full Text] [Related]
10. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding. Katkova EV; Onufriev AV; Aguilar B; Sulimov VB J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081 [TBL] [Abstract][Full Text] [Related]
11. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies. Deng N; Zhang BW; Levy RM J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174 [TBL] [Abstract][Full Text] [Related]
12. Towards a transferable nonelectrostatic model for continuum solvation: The electrostatic and nonelectrostatic energy correction model. Vassetti D; Labat F J Comput Chem; 2022 Jul; 43(20):1372-1387. PubMed ID: 35678272 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects. Lomize AL; Pogozheva ID; Mosberg HI J Chem Inf Model; 2011 Apr; 51(4):918-29. PubMed ID: 21438609 [TBL] [Abstract][Full Text] [Related]
14. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198 [TBL] [Abstract][Full Text] [Related]
15. Explicitly representing the solvation shell in continuum solvent calculations. da Silva EF; Svendsen HF; Merz KM J Phys Chem A; 2009 Jun; 113(22):6404-9. PubMed ID: 19425558 [TBL] [Abstract][Full Text] [Related]
16. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. Bryantsev VS; Diallo MS; Goddard WA J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution. Tang E; Di Tommaso D; de Leeuw NH Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433 [TBL] [Abstract][Full Text] [Related]
18. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models. Sundararaman R; Gunceler D; Arias TA J Chem Phys; 2014 Oct; 141(13):134105. PubMed ID: 25296782 [TBL] [Abstract][Full Text] [Related]
19. Extraction of tryptophan with ionic liquids studied with molecular dynamics simulations. Seduraman A; Wu P; Klähn M J Phys Chem B; 2012 Jan; 116(1):296-304. PubMed ID: 22136607 [TBL] [Abstract][Full Text] [Related]
20. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]