These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36001986)
1. Noise-induced formation of heterogeneous patterns in the Turing stability zones of diffusion systems. Bashkirtseva I; Pankratov A; Ryashko L J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 36001986 [TBL] [Abstract][Full Text] [Related]
2. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions. Alonso S; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167 [TBL] [Abstract][Full Text] [Related]
3. Constructive role of noise and diffusion in an excitable slow-fast population system. Bashkirtseva I; Pankratov A; Slepukhina E; Tsvetkov I Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190253. PubMed ID: 32279634 [TBL] [Abstract][Full Text] [Related]
4. Pattern formation from spatially heterogeneous reaction-diffusion systems. Van Gorder RA Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604 [TBL] [Abstract][Full Text] [Related]
5. Stochastic phenomena in pattern formation for distributed nonlinear systems. Kolinichenko AP; Pisarchik AN; Ryashko LB Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190252. PubMed ID: 32279629 [TBL] [Abstract][Full Text] [Related]
6. Stochastic Turing patterns: analysis of compartment-based approaches. Cao Y; Erban R Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150 [TBL] [Abstract][Full Text] [Related]
7. Turing pattern formation in fractional activator-inhibitor systems. Henry BI; Langlands TA; Wearne SL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638 [TBL] [Abstract][Full Text] [Related]
8. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations. Halloy J; Sonnino G; Coullet P Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014 [TBL] [Abstract][Full Text] [Related]
9. Free energy dissipation enhances spatial accuracy and robustness of self-positioned Turing pattern in small biochemical systems. Zhang D; Zhang C; Ouyang Q; Tu Y J R Soc Interface; 2023 Jul; 20(204):20230276. PubMed ID: 37403484 [TBL] [Abstract][Full Text] [Related]
10. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting. Liu B; Wu R; Chen L Math Biosci; 2018 Apr; 298():71-79. PubMed ID: 29471009 [TBL] [Abstract][Full Text] [Related]
12. Turing Pattern Formation in Reaction-Cross-Diffusion Systems with a Bilayer Geometry. Diez A; Krause AL; Maini PK; Gaffney EA; Seirin-Lee S Bull Math Biol; 2024 Jan; 86(2):13. PubMed ID: 38170298 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems. Chiu JW; Chiam KH Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056708. PubMed ID: 19113238 [TBL] [Abstract][Full Text] [Related]
14. Effects of noise on the critical points of Turing instability in complex ecosystems. Xiao R; Gao Q; Azaele S; Sun Y Phys Rev E; 2023 Jul; 108(1-1):014407. PubMed ID: 37583214 [TBL] [Abstract][Full Text] [Related]
15. Solution landscape of reaction-diffusion systems reveals a nonlinear mechanism and spatial robustness of pattern formation. Wu S; Yu B; Tu Y; Zhang L ArXiv; 2024 Aug; ():. PubMed ID: 39253638 [TBL] [Abstract][Full Text] [Related]
16. The effect of landscape fragmentation on Turing-pattern formation. Zaker N; Cobbold HA; Kumari S Math Biosci Eng; 2022 Jan; 19(3):2506-2537. PubMed ID: 35240795 [TBL] [Abstract][Full Text] [Related]
17. Instability of turing patterns in reaction-diffusion-ODE systems. Marciniak-Czochra A; Karch G; Suzuki K J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913 [TBL] [Abstract][Full Text] [Related]
18. Effects of square spatial periodic forcing on oscillatory hexagon patterns in coupled reaction-diffusion systems. Fan W; Ma F; Tong Y; Liu Q; Liu R; He Y; Liu F Phys Chem Chem Phys; 2023 Oct; 25(38):26023-26031. PubMed ID: 37740348 [TBL] [Abstract][Full Text] [Related]
19. Spatial periodic forcing of Turing structures. Dolnik M; Berenstein I; Zhabotinsky AM; Epstein IR Phys Rev Lett; 2001 Dec; 87(23):238301. PubMed ID: 11736479 [TBL] [Abstract][Full Text] [Related]
20. An hypothesis: phosphorylation fields as the source of positional information and cell differentiation--(cAMP, ATP) as the universal morphogenetic Turing couple. Schiffmann Y Prog Biophys Mol Biol; 1991; 56(2):79-105. PubMed ID: 1658848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]