BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36002124)

  • 1. Correlating the microstructural architecture and macrostructural behaviour of the brain.
    Hoppstädter M; Püllmann D; Seydewitz R; Kuhl E; Böl M
    Acta Biomater; 2022 Oct; 151():379-395. PubMed ID: 36002124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction.
    Bianchi F; Hofmann F; Smith AJ; Ye H; Thompson MS
    J Mech Behav Biomed Mater; 2018 Nov; 87():205-212. PubMed ID: 30077812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origins of brain tissue elasticity under multiple loading modes by analyzing the microstructure-based models.
    Wang P; Du Z; Shi H; Liu J; Liu Z; Zhuang Z
    Biomech Model Mechanobiol; 2023 Aug; 22(4):1239-1252. PubMed ID: 37184689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical characterization of the passive porcine stomach.
    Holzer CS; Pukaluk A; Viertler C; Regitnig P; Caulk AW; Eschbach M; Contini EM; Holzapfel GA
    Acta Biomater; 2024 Jan; 173():167-183. PubMed ID: 37984627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates.
    Trotta A; Ní Annaidh A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103381. PubMed ID: 31430703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Jan; 49(1):276-286. PubMed ID: 32494967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation.
    Mohammadkhah M; Murphy P; Simms CK
    J Mech Behav Biomed Mater; 2016 Sep; 62():468-480. PubMed ID: 27281164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive modeling of liver tissue: experiment and theory.
    Gao Z; Lister K; Desai JP
    Ann Biomed Eng; 2010 Feb; 38(2):505-16. PubMed ID: 19806457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain stiffness increases with myelin content.
    Weickenmeier J; de Rooij R; Budday S; Steinmann P; Ovaert TC; Kuhl E
    Acta Biomater; 2016 Sep; 42():265-272. PubMed ID: 27475531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison.
    Evin M; Sudres P; Weber P; Godio-Raboutet Y; Arnoux PJ; Wagnac E; Petit Y; Tillier Y
    Acta Biomater; 2022 Mar; 140():446-456. PubMed ID: 34838701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity analysis of effective transverse shear viscoelastic and diffusional properties of myelinated white matter.
    Sullivan DJ; Wu X; Gallo NR; Naughton NM; Georgiadis JG; Pelegri AA
    Phys Med Biol; 2021 Jan; 66(3):035027. PubMed ID: 32599577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of the shear wave speed-stress relationship to soft tissue material properties and fiber alignment.
    Blank JL; Thelen DG; Allen MS; Roth JD
    J Mech Behav Biomed Mater; 2022 Jan; 125():104964. PubMed ID: 34800889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus.
    Jacobs NT; Smith LJ; Han WM; Morelli J; Yoder JH; Elliott DM
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1611-9. PubMed ID: 22098863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.
    Moran R; Smith JH; García JJ
    J Biomech; 2014 Nov; 47(15):3762-6. PubMed ID: 25446271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On multiscale tension-compression asymmetry in skeletal muscle.
    Böl M; Kohn S; Leichsenring K; Morales-Orcajo E; Ehret AE
    Acta Biomater; 2022 May; 144():210-220. PubMed ID: 35339701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.