These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1276 related articles for article (PubMed ID: 36002128)

  • 1. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing.
    Anand R; Salar Amoli M; Huysecom AS; Amorim PA; Agten H; Geris L; Bloemen V
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35700719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles.
    Jo HJ; Kang MS; Heo HJ; Jang HJ; Park R; Hong SW; Kim YH; Han DW
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130696. PubMed ID: 38458288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Maturation of 3D Bioprinted Skeletal Muscle Tissue Constructs Encapsulating Soluble Factor-Releasing Microparticles.
    de Barros NR; Darabi MA; Ma X; Diltemiz SE; Ermis M; Hassani Najafabadi A; Nadine S; Banton EA; Mandal K; Abbasgholizadeh R; Falcone N; Mano JF; Nasiri R; Herculano RD; Zhu Y; Ostrovidov S; Lee J; Kim HJ; Hosseini V; Dokmeci MR; Ahadian S; Khademhosseini A
    Macromol Biosci; 2023 Dec; 23(12):e2300276. PubMed ID: 37534566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss.
    Choi YJ; Jun YJ; Kim DY; Yi HG; Chae SH; Kang J; Lee J; Gao G; Kong JS; Jang J; Chung WK; Rhie JW; Cho DW
    Biomaterials; 2019 Jun; 206():160-169. PubMed ID: 30939408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation.
    Ronzoni FL; Aliberti F; Scocozza F; Benedetti L; Auricchio F; Sampaolesi M; Cusella G; Redwan IN; Ceccarelli G; Conti M
    J Tissue Eng Regen Med; 2022 May; 16(5):484-495. PubMed ID: 35246958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration.
    Kang D; Liu Z; Qian C; Huang J; Zhou Y; Mao X; Qu Q; Liu B; Wang J; Hu Z; Miao Y
    Acta Biomater; 2023 Jul; 165():19-30. PubMed ID: 35288311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling.
    de Barros NR; Gomez A; Ermis M; Falcone N; Haghniaz R; Young P; Gao Y; Aquino AF; Li S; Niu S; Chen R; Huang S; Zhu Y; Eliahoo P; Sun A; Khorsandi D; Kim J; Kelber J; Khademhosseini A; Kim HJ; Li B
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37348491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation.
    Chen J; Huang D; Wang L; Hou J; Zhang H; Li Y; Zhong S; Wang Y; Wu Y; Huang W
    J Colloid Interface Sci; 2020 Aug; 574():162-173. PubMed ID: 32311538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering.
    Fornetti E; De Paolis F; Fuoco C; Bernardini S; Giannitelli SM; Rainer A; Seliktar D; Magdinier F; Baldi J; Biagini R; Cannata S; Testa S; Gargioli C
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36689776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting.
    Yang GH; Kim W; Kim J; Kim G
    Theranostics; 2021; 11(1):48-63. PubMed ID: 33391460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering.
    Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J; Li Z; Li S; Zhang Q; Zhou X; He C
    Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.