These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36002267)

  • 21. The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes.
    Cowles CE; Goodrich-Blair H
    J Bacteriol; 2008 Jun; 190(12):4121-8. PubMed ID: 18390667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosomal toxin-antitoxin systems may act as antiaddiction modules.
    Saavedra De Bast M; Mine N; Van Melderen L
    J Bacteriol; 2008 Jul; 190(13):4603-9. PubMed ID: 18441063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The chromosomal relBE2 toxin-antitoxin locus of Streptococcus pneumoniae: characterization and use of a bioluminescence resonance energy transfer assay to detect toxin-antitoxin interaction.
    Nieto C; Pellicer T; Balsa D; Christensen SK; Gerdes K; Espinosa M
    Mol Microbiol; 2006 Feb; 59(4):1280-96. PubMed ID: 16430700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae).
    Jung SC; Kim YG
    J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biological function of the type II toxin-antitoxin system
    Zhang H; Tao S; Chen H; Fang Y; Xu Y; Chen L; Ma F; Liang W
    Front Microbiol; 2024; 15():1379625. PubMed ID: 38690370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and functional determinants inferred from deep mutational scans.
    Bajaj P; Manjunath K; Varadarajan R
    Protein Sci; 2022 Jul; 31(7):e4357. PubMed ID: 35762712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis.
    Goodrich-Blair H
    Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage.
    Mahar AN; Al-Siyabi AA; Elawad SA; Hague NG; Gowen SR
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):233-8. PubMed ID: 17390798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae.
    Sicard M; Tabart J; Boemare NE; Thaler O; Moulia C
    Parasitology; 2005 Nov; 131(Pt 5):687-94. PubMed ID: 16255827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Three Type II Toxin-Antitoxin Systems in Model Bacterial Plant Pathogen
    Boss L; Górniak M; Lewańczyk A; Morcinek-Orłowska J; Barańska S; Szalewska-Pałasz A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans.
    Drace K; Darby C
    Appl Environ Microbiol; 2008 Jul; 74(14):4509-15. PubMed ID: 18515487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternative interactions define gyrase specificity in the CcdB family.
    De Jonge N; Simic M; Buts L; Haesaerts S; Roelants K; Garcia-Pino A; Sterckx Y; De Greve H; Lah J; Loris R
    Mol Microbiol; 2012 Jun; 84(5):965-78. PubMed ID: 22582791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes.
    Roder AC; Stock SP
    J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria.
    Kamruzzaman M; Wu AY; Iredell JR
    Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34208120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain.
    De Jonge N; Garcia-Pino A; Buts L; Haesaerts S; Charlier D; Zangger K; Wyns L; De Greve H; Loris R
    Mol Cell; 2009 Jul; 35(2):154-63. PubMed ID: 19647513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes.
    Veesenmeyer JL; Andersen AW; Lu X; Hussa EA; Murfin KE; Chaston JM; Dillman AR; Wassarman KM; Sternberg PW; Goodrich-Blair H
    Mol Microbiol; 2014 Sep; 93(5):1026-42. PubMed ID: 25041533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Analysis of Diverse Acetyltransferase-Type Toxin-Antitoxin Loci in Klebsiella pneumoniae.
    Goh YX; Li P; Wang M; Djordjevic M; Tai C; Wang H; Deng Z; Chen Z; Ou HY
    Microbiol Spectr; 2022 Aug; 10(4):e0032022. PubMed ID: 35703555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathogenicity of bacterium, Xenorhabdus nematophila isolated from entomopathogenic nematode (Steinernema carpocapsae) and its secretion against Galleria mellonella larvae.
    Mahar AN; Munir M; Elawad S; Gowen SR; Hague NG
    J Zhejiang Univ Sci B; 2005 Jun; 6(6):457-63. PubMed ID: 15909327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immune Response of
    Garriga A; Mastore M; Morton A; Pino FGD; Brivio MF
    Insects; 2020 Mar; 11(4):. PubMed ID: 32231138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes.
    Heungens K; Cowles CE; Goodrich-Blair H
    Mol Microbiol; 2002 Sep; 45(5):1337-53. PubMed ID: 12207701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.