These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Untargeted Phytochemical Profile of Three Meliaceae Species Related to In Vitro Cytotoxicity and Anti-Virulence Activity against MRSA Isolates. Zhang L; Ismail MM; Rocchetti G; Fayek NM; Lucini L; Saber FR Molecules; 2022 Jan; 27(2):. PubMed ID: 35056761 [TBL] [Abstract][Full Text] [Related]
4. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. Teh CH; Nazni WA; Nurulhusna AH; Norazah A; Lee HL BMC Microbiol; 2017 Feb; 17(1):36. PubMed ID: 28209130 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial and antibiofilm activities of Mayan medicinal plants against Methicillin-susceptible and -resistant strains of Staphylococcus aureus. Uc-Cachón AH; Dzul-Beh AJ; Palma-Pech GA; Jiménez-Delgadillo B; Flores-Guido JS; Gracida-Osorno C; Molina-Salinas GM J Ethnopharmacol; 2021 Oct; 279():114369. PubMed ID: 34186100 [TBL] [Abstract][Full Text] [Related]
6. Ultrastructural changes in methicillin-resistant Staphylococcus aureus (MRSA) induced by metabolites of thermophilous fungi Acrophialophora levis. Agrawal S; Nandeibam J; Sarangthem I PLoS One; 2021; 16(10):e0258607. PubMed ID: 34648570 [TBL] [Abstract][Full Text] [Related]
7. Synergism of coumarins from the Chinese drug Zanthoxylum nitidum with antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Zuo GY; Wang CJ; Han J; Li YQ; Wang GC Phytomedicine; 2016 Dec; 23(14):1814-1820. PubMed ID: 27912884 [TBL] [Abstract][Full Text] [Related]
8. Catechin isolated from cashew nut shell exhibits antibacterial activity against clinical isolates of MRSA through ROS-mediated oxidative stress. Sinsinwar S; Vadivel V Appl Microbiol Biotechnol; 2020 Oct; 104(19):8279-8297. PubMed ID: 32857200 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Aruldass CA; Masalamany SRL; Venil CK; Ahmad WA Environ Sci Pollut Res Int; 2018 Feb; 25(6):5164-5180. PubMed ID: 28361404 [TBL] [Abstract][Full Text] [Related]
10. Investigation of Morchella esculenta and Morchella conica for their antibacterial potential against methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Streptococcus pyogenes. Haq FU; Imran M; Saleem S; Aftab U; Ghazal A Arch Microbiol; 2022 Jun; 204(7):391. PubMed ID: 35699800 [TBL] [Abstract][Full Text] [Related]
12. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. Buru AS; Pichika MR; Neela V; Mohandas K J Ethnopharmacol; 2014 May; 153(3):587-95. PubMed ID: 24613273 [TBL] [Abstract][Full Text] [Related]
13. Synergistic antimicrobial activity of melittin with clindamycin on the expression of encoding exfoliative toxin in Staphylococcus aureus. Mahmoudi H; Alikhani MY; Imani Fooladi AA Toxicon; 2020 Aug; 183():11-19. PubMed ID: 32450143 [TBL] [Abstract][Full Text] [Related]
14. [In vitro activity of ceftaroline against Spanish isolates of Staphylococcus aureus: a multicenter study]. Tenorio-Abreu A; Gil Tomás J; Bratos Pérez MÁ; de la Iglesia Salgado A; Borrás Máñez M; Ortiz de Lejarazu Leonardo R; Ávila Alonso A; Colomina Rodríguez J; Pérez Cáceres JA; Saavedra Martín JM; Márquez Sanabria A; Domínguez Castaño A; de la Iglesia Salgado M Enferm Infecc Microbiol Clin; 2015 Feb; 33(2):101-4. PubMed ID: 25091384 [TBL] [Abstract][Full Text] [Related]
15. Serrapeptase impairs biofilm, wall, and phospho-homeostasis of resistant and susceptible Staphylococcus aureus. Katsipis G; Pantazaki AA Appl Microbiol Biotechnol; 2023 Feb; 107(4):1373-1389. PubMed ID: 36635396 [TBL] [Abstract][Full Text] [Related]
16. Design, synthesis and antibacterial activity of chalcones against MSSA and MRSA planktonic cells and biofilms. Garcia MAR; Theodoro RS; Sardi JCO; Santos MB; Ayusso GM; Pavan FR; Costa AR; Santa Cruz LM; Rosalen PL; Regasini LO Bioorg Chem; 2021 Nov; 116():105279. PubMed ID: 34509799 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of antimicrobial peptide LL-37 against biofilm forming Staphylococcus aureus strains obtained from chronic wound infections. Demirci M; Yigin A; Demir C Microb Pathog; 2022 Jan; 162():105368. PubMed ID: 34942309 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory effects of Inula britannica extract fermented by Lactobacillus plantarum KCCM 11613P on coagulase activity and growth of Staphylococcus aureus including methicillin-resistant strains. Bae WY; Kim HY; Kim KT; Paik HD J Food Biochem; 2019 Apr; 43(4):e12785. PubMed ID: 31353594 [TBL] [Abstract][Full Text] [Related]
20. Pharmacodynamic activity of ceftobiprole compared with vancomycin versus methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate Staphylococcus aureus (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) using an in vitro model. Zhanel GG; Voth D; Nichol K; Karlowsky JA; Noreddin AM; Hoban DJ J Antimicrob Chemother; 2009 Aug; 64(2):364-9. PubMed ID: 19454524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]