These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36002667)
1. Potential Impact of Chemical Fungicides on the Efficacy of Metarhizium rileyi and the Occurrence of Pandora gammae on Caterpillars in Soybean Crops. Lopes RB; Faria M; Souza DA; Sosa-Gómez DR Microb Ecol; 2023 Jul; 86(1):647-657. PubMed ID: 36002667 [TBL] [Abstract][Full Text] [Related]
2. Non-target impacts of soybean rust fungicides on the fungal entomopathogens of soybean aphid. Koch KA; Potter BD; Ragsdale DW J Invertebr Pathol; 2010 Mar; 103(3):156-64. PubMed ID: 20025884 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of key parameters for developing a Metarhizium rileyi-based biopesticide against Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize: laboratory, greenhouse, and field trials. Faria M; Souza DA; Sanches MM; Schmidt FGV; Oliveira CM; Benito NP; Lopes RB Pest Manag Sci; 2022 Mar; 78(3):1146-1154. PubMed ID: 34811883 [TBL] [Abstract][Full Text] [Related]
4. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
5. Performance of phytosanitary products for control of soybean caterpillar. Borges FSP; Loureiro ES; Jaurretche JE; Pessoa LGA; Arruda LA; Dias PM; Navarrete AA An Acad Bras Cienc; 2021; 93(4):e20200205. PubMed ID: 34705937 [TBL] [Abstract][Full Text] [Related]
6. Within-host interactions of Metarhizium rileyi strains and nucleopolyhedroviruses in Spodoptera frugiperda and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Souza ML; Sanches MM; Souza DA; Faria M; Espinel-Correal C; Sihler W; Lopes RB J Invertebr Pathol; 2019 Mar; 162():10-18. PubMed ID: 30735762 [TBL] [Abstract][Full Text] [Related]
7. Effects of intraguild interactions on Anticarsia gemmatalis and Chrysodeixis includens larval fitness and behavior in soybean. Ongaratto S; Baldin EL; Hunt TE; Montezano DG; Robinson EA; Dos Santos MC Pest Manag Sci; 2021 Jun; 77(6):2939-2947. PubMed ID: 33619825 [TBL] [Abstract][Full Text] [Related]
8. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Licona-Juárez KC; Andrade EP; Medina HR; Oliveira JNS; Sosa-Gómez DR; Rangel DEN Fungal Biol; 2023; 127(7-8):1250-1258. PubMed ID: 37495315 [TBL] [Abstract][Full Text] [Related]
9. Identification and analysis of C-type lectins from Helicoverpa armigera in response to the entomopathogenic fungus Metarhizium rileyi infection. Wang GJ; Wang JL; Liu XS Dev Comp Immunol; 2023 Mar; 140():104620. PubMed ID: 36528221 [TBL] [Abstract][Full Text] [Related]
10. Pathogenicity and in vivo Development of Metarhizium rileyi Against Spodoptera litura (Lepidoptera: Noctuidae) Larvae. Liu S; Xu Z; Wang X; Zhao L; Wang G; Li X; Zhang L J Econ Entomol; 2019 Aug; 112(4):1598-1603. PubMed ID: 31329887 [TBL] [Abstract][Full Text] [Related]
11. Blastospores from Gotti IA; Moreira CC; Delalibera I; De Fine Licht HH Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375096 [TBL] [Abstract][Full Text] [Related]
12. Integrating a Bacillus-based product with fungicides by foliar application to protect soybean: a sustainable approach to avoid exclusive use of chemicals. Santos FM; Viera LS; Camargo DP; Muniz MF; Costa IF; Guedes JV; Santos JR; Silva JC Pest Manag Sci; 2022 Nov; 78(11):4832-4840. PubMed ID: 35908173 [TBL] [Abstract][Full Text] [Related]
13. Novel report on soil infection with Metarhizium rileyi against soil-dwelling life stages of insect pests. Vivekanandhan P; Kamaraj C; Alharbi SA; Ansari MJ J Basic Microbiol; 2024 Aug; 64(8):e2400159. PubMed ID: 38771084 [TBL] [Abstract][Full Text] [Related]
14. Field Efficacy of Metarhizium rileyi Applications Against Spodoptera frugiperda (Lepidoptera: Noctuidae) in Maize. Barros SKA; de Almeida EG; Ferreira FTR; Barreto MR; Lopes RB; Pitta RM Neotrop Entomol; 2021 Dec; 50(6):976-988. PubMed ID: 34590294 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity assessment and SDHC-I86F mutation frequency of Phakopsora pachyrhizi populations to benzovindiflupyr and fluxapyroxad fungicides from 2015 to 2019 in Brazil. Mello FE; Mathioni SM; Fantin LH; Rosa DD; Antunes RFD; Filho NRC; Duvaresch DL; Canteri MG Pest Manag Sci; 2021 Oct; 77(10):4331-4339. PubMed ID: 33950556 [TBL] [Abstract][Full Text] [Related]
16. Negative effects on the development of Vinha FB; Rojas LAC; Ramos Sales C; Monteiro Lima NS; Nascimento JD; De Carvalho LAL; Lemos EGM Front Fungal Biol; 2022; 3():968528. PubMed ID: 37746231 [TBL] [Abstract][Full Text] [Related]
17. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system. Boucias D; Liu S; Meagher R; Baniszewski J J Invertebr Pathol; 2016 May; 136():100-8. PubMed ID: 27018146 [TBL] [Abstract][Full Text] [Related]
18. Fitness and mating compatibility of Chrysodeixis includens (W.) (Lepidoptera: Noctuidae) populations collected in different provinces and crops in Argentina. Dami LC; Herrero MI; Casmuz AS; Alzogaray RA; Gastaminza GA An Acad Bras Cienc; 2021; 93(2):e20190523. PubMed ID: 34105610 [TBL] [Abstract][Full Text] [Related]
19. Performance of Genetically Modified Soybean Expressing the Cry1A.105, Cry2Ab2, and Cry1Ac Proteins Against Key Lepidopteran Pests in Brazil. Bacalhau FB; Dourado PM; Horikoshi RJ; Carvalho RA; Semeão A; Martinelli S; Berger GU; Head GP; Salvadori JR; Bernardi O J Econ Entomol; 2020 Dec; 113(6):2883-2889. PubMed ID: 33111954 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of Phakopsora pachyrhizi Isolates to Fungicides and Reduction of Fungal Infection Based on Fungicide and Timing of Application. Twizeyimana M; Hartman GL Plant Dis; 2017 Jan; 101(1):121-128. PubMed ID: 30682308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]