These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36002902)

  • 1. Acetoin production from lignocellulosic biomass hydrolysates with a modular metabolic engineering system in Bacillus subtilis.
    Wang Q; Zhang X; Ren K; Han R; Lu R; Bao T; Pan X; Yang T; Xu M; Rao Z
    Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):87. PubMed ID: 36002902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation.
    Jia X; Peng X; Liu Y; Han Y
    Biotechnol Biofuels; 2017; 10():232. PubMed ID: 29046719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis.
    Li T; Liu P; Guo G; Liu Z; Zhong L; Guo L; Chen C; Hao N; Ouyang P
    AMB Express; 2023 Feb; 13(1):25. PubMed ID: 36853576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High production of acetoin from glycerol by Bacillus subtilis 35.
    Tsigoriyna L; Petrova P; Petrov K
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):175-185. PubMed ID: 36454254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels.
    Yang T; Rao Z; Hu G; Zhang X; Liu M; Dai Y; Xu M; Xu Z; Yang ST
    Biotechnol Biofuels; 2015; 8():129. PubMed ID: 26312069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.
    Ma W; Liu Y; Shin HD; Li J; Chen J; Du G; Liu L
    Bioresour Technol; 2018 Feb; 250():642-649. PubMed ID: 29220808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of acetoin from hydrothermally pretreated oil mesocarp fiber using metabolically engineered Escherichia coli in a bioreactor system.
    Mohd Yusoff MZ; Akita H; Hassan MA; Fujimoto S; Yoshida M; Nakashima N; Hoshino T
    Bioresour Technol; 2017 Dec; 245(Pt A):1040-1048. PubMed ID: 28946206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of heterologous expression of phaCBA promotes the acetoin stress response mechanism in Bacillus subtilis using transcriptomics and metabolomics approaches.
    Li T; Li H; Zhong L; Qin Y; Guo G; Liu Z; Hao N; Ouyang P
    Microb Cell Fact; 2024 Feb; 23(1):58. PubMed ID: 38383407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruiting a Phosphite Dehydrogenase/Formamidase-Driven Antimicrobial Contamination System in
    Guo ZW; Ou XY; Liang S; Gao HF; Zhang LY; Zong MH; Lou WY
    ACS Synth Biol; 2020 Sep; 9(9):2537-2545. PubMed ID: 32786356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Rao Z; Yang T; Xu M; Xu Z; Li H; Yang S
    Metab Eng; 2014 May; 23():34-41. PubMed ID: 24525333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.